

Arria V Device Handbook

Volume 1: Device Overview and Datasheet

101 Innovation Drive San Jose, CA 95134 www.altera.com

© 2011 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability or

ISO 9001:2008 Registered

Contents

Chapter Revision Dates	v
Chantar 1 Overvious for the Arris V Davisa Family	
Chapter 1. Overview for the Arria V Device Family	1.0
Arria V Feature Summary	
Arria V Family Plan	
Low-Power Serial Transceivers	
PMA Support	
PCS Support PCIe Gen1 and Gen2 Hard IP	
FPGA GPIOs External Memory	
ALM	
Variable-Precision DSP Block	
Embedded Memory	
Dynamic and Partial Reconfiguration	
Clock Networks and PLL Clock Sources	
Enhanced Configuration and Configuration via Protocol	
Power Management	
SoC FPGA with HPS	
Features of the HPS	
System Peripherals	
HPS-FPGA AXI Bridges	
HPS SDRAM Controller Subsystem	
FPGA Configuration and Processor Booting	
Hardware and Software Development	
Ordering Information	
Document Revision History	1–21
Chapter 2. Device Datasheet for Arria V Devices	
Electrical Characteristics	2 1
Operating Conditions	
Absolute Maximum Ratings	
Recommended Operating Conditions	
DC Characteristics	
Internal Weak Pull-Up Resistor	
I/O Standard Specifications	
*	
Power Consumption	
Switching Characteristics	
Transceiver Performance Specifications	
Core Performance Specifications	
Clock Tree Specifications	
PLL Specifications	
DSP Block Specifications	
Memory Block Specifications	
Temperature Sensing Diode Specifications	
Periphery Performance	
High-Speed I/O Specification	
DQS Logic Block and Memory Output Clock Jitter Specifications	2–34

Contents

OCT Calibration Block Specifications	2–35
Duty Cycle Distortion (DCD) Specifications	
Configuration Specification	
POR Specifications	
JTAG Configuration Timing	
FPP Configuration Timing	
DCLK-to-DATA[] Ratio (r) for FPP Configuration	
EDD Configuration Timin and an DCLK to DATAIL 1	2.29
FPP Configuration Timing when DCLK to DATA[] = 1	2-38
FPP Configuration Timing when DCLK to DATA[] > 1	
AS Configuration Timing	
PS Configuration Timing	2–43
Remote System Upgrades Circuitry Timing Specification	2–45
User Watchdog Internal Oscillator Frequency Specification	
I/O Timing	
Programmable IOE Delay	
Programmable Output Buffer Delay	
Glossary	
Document Revision History	2–50
Additional Information	
	T A
How to Contact Altera	
Typographic Conventions	Info–1

Chapter Revision Dates

The chapters in this document, *Volume 1: Device Overview and Datasheet*, were revised on the following dates. Where chapters or groups of chapters are available separately, part numbers are listed.

Chapter 1. Overview for the Arria V Device Family

Revised: *November* 2011 Part Number: *AV5*1001-1.1

Chapter 2. Device Datasheet for Arria V Devices

Revised: *November* 2011 Part Number: *AV-51002-1.1* vi Chapter Revision Dates

1. Overview for the Arria V Device Family

AV51001-1.1

Built on the 28-nm low-power process technology, Arria[®] V devices offer the lowest power and lowest system cost for mainstream applications. Arria V devices include unique innovations such as the lowest static power in its class, the lowest power transceivers of any midrange family, support for serial data rates up to 10.3125 gigabits per second (Gbps), a powerful collection of integrated hard intellectual property (IP), and a power-optimized core architecture, making Arria V devices ideal for the following applications:

- Power sensitive wireless infrastructure equipment
- 20G/40G bridging, switching, and packet processing applications
- High-definition video processing and image manipulation
- Intensive digital signal processing (DSP) applications

Arria V devices are available in the following variants:

- Arria V GX—FPGA with integrated 6-Gbps transceivers, this variant provides bandwidth, cost, and power levels that are optimized for high-volume data and signal-processing applications.
- Arria V GT—FPGA with integrated 10-Gbps transceivers, this variant provides enhanced high-speed serial I/O bandwidth for cost-sensitive data and signal processing applications.
- Arria V SX—system-on-a-chip (SoC) FPGA with integrated Arria V FPGA and ARM®-based hard processor system (HPS).
- Arria V ST—SoC FPGA with integrated Arria V FPGA, ARM-based HPS, and 10-Gbps transceivers.

The Arria V SoC FPGA variants feature an FPGA integrated with an HPS that consists of a dual-core ARM CortexTM-A9 MPCoreTM processor, a rich set of peripherals, and a shared multiport SDRAM memory controller.

The unique feature set in Arria V devices was chosen to optimize power, cost, and performance. These features include a redesigned adaptive logic module (ALM), distributed memory, new 10-Kbit (M10K) internal memory blocks, variable-precision DSP blocks, and fractional clock synthesis phase-locked loops (PLLs) with a highly flexible clocking network, all interconnected by a power-optimized MultiTrack routing architecture.

© 2011 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Arria V devices provide interface support flexibility with up to 10-Gbps transceivers, 1.25-Gbps **LVDS**, 1.333-Gbps memory interfaces with low latency, and support for all mainstream single-ended and differential I/O standards, including 3.3 V. Arria V devices also offer the lowest system cost by requiring only three power rails to operate the devices and a thermal composite flip chip ball-grid array (BGA) packaging option. Arria V devices also support innovative features, such as configuration via protocol (CvP), partial reconfiguration, and design security.

Arria V devices provide the power, features, and cost you require to succeed with your designs. With these innovations, Arria V devices deliver ideal performance and capability for a wide range of applications.

Arria V Feature Summary

Table 1–1 lists the Arria V device features.

Table 1–1. Feature Summary for Arria V Devices (Part 1 of 3)

Feature	Details
	■ 28-nm TSMC low-power process technology
Technology	 Lowest static power in its class (less than 800 mW for 500 K logic elements (LEs) at 85°C junction under typical conditions)
	■ 1.1-V core nominal voltage
Lowest-power serial	611-Mbps to 10.3125-Gbps integrated transceivers
transceivers of any	Transmit pre-emphasis and receiver equalization
midrange FPGA	Dynamic reconfiguration of individual channels
	■ 1.25-Gbps LVDS
FPGA General-purpose	■ 667-MHz/1.333-Gbps external memory interface
I/Os (GPIOs)	On-chip termination (OCT)
	■ 3.3-V support
	Custom implementation up to 10.3125 Gbps
	■ PCI Express® (PCIe®) Gen1 and Gen2
Embedded transceiver hard IP	■ Gbps Ethernet (GbE) and XAUI physical coding sublayer (PCS)
nara n	Common Public Radio Interface (CPRI) PCS
	Gigabit-capable passive optical network (GPON) PCS

Table 1–1. Feature Summary for Arria V Devices (Part 2 of 3)

Feature	Details
	 Dual-core ARM Cortex-A9 MPCore processor. Up to 800 MHz maximum frequency that supports symmetric and asymmetric multiprocessing
	■ Interface peripherals—10/100/1000 Ethernet media access control (MAC), USB 2.0 On-The-Go (OTG) controller, Quad SPI flash controller, NAND flash controller, and SD/MMC/SDIO controller, UART, serial peripheral interface (SPI), I2C interfaces, and up to 86 GPIO interfaces
HPS (Arria V SX and ST	 System peripherals—general-purpose and watchdog timers, direct memory access (DMA) controller, FPGA configuration manager, and clock and reset managers
devices only)	On-chip RAM and boot ROM
-,	 HPS-FPGA bridges—include the FPGA-to-HPS, HPS-to-FPGA, and lightweight HPS-to-FPGA bridges that allow the FPGA fabric to master transactions to slaves in the HPS, and vice versa
	 FPGA-to-HPS SDRAM controller subsystem—provides a configurable interface to the multiport front end of the HPS SDRAM controller
	■ ARM CoreSight [™] JTAG debug, trace port, and on-chip trace storage
	Three fractional PLLs
Physical medium	■ 10GBASE-R
attachment (PMA) with soft PCS	■ 9.8304-Gbps CPRI
High-performance core	■ Enhanced ALM with four registers
fabric	 Improved routing architecture to reduce congestion and improve compilation time
	 Natively supports three-signal processing precision ranging from 9 x 9, 18 x 19, or 27 x 27 in the same DSP block
Variable-precision DSP blocks	 64-bit accumulator and cascade for systolic finite impulse responses (FIRs)
DIOCKS	Embedded internal coefficient memory
	Pre-adder/subtractor improves efficiency
	M10K, 10 Kbit with soft error correction code (ECC)
Internal memory blocks	 Memory logic array block (MLAB), 640-bit distributed LUTRAM—you can use up to 25% o the LEs as MLAB memory
	Hardened double data rate3 (DDR3) and DDR2 memory controllers
High-resolution Fractional	Integer mode and fractional mode
PLLs	 Precision clock synthesis, clock delay compensation, and zero delay buffering (ZDB)
	625-MHz global clock network
Clock networks	Global, quadrant, and peripheral clock networks
	 Unused clock networks can be powered down to reduce dynamic power

Table 1–1. Feature Summary for Arria V Devices (Part 3 of 3)

Feature	Details
	Partial and dynamic reconfigurations
	■ CvP
	Configuration via HPS
Configuration	Serial and parallel flash interface
	■ Enhanced advanced encryption standard (AES) design security features
	Tamper protection
	Remote system upgrade
	Thermal composite flip chip BGA packaging
Packaging	 Multiple device densities with identical package footprints for seamless migration between different device densities
	Lead, lead-free (Pb-free), and RoHS-compliant options

Arria V Family Plan

Arria V devices offer various thermal composite flip chip BGA packaging options with differing price and performance points. Table 1–2 and Table 1–3 list the Arria V devices features.

Table 1-2. Maximum Resource Counts for Arria V GX Devices

Footore	Arria V GX Device								
Feature	5AGXA1	5AGXA3	5AGXA5	5AGXA7	5AGXB1	5AGXB3	5AGXB5	5AGXB7	
ALMs	28,302	56,100	71,698	91,680	113,208	136,880	158,491	190,240	
LE (K)	75	148.67	190	242.95	300	362.73	420	504.14	
M10K memory blocks	800	1,051	1,180	1,366	1,510	1,726	2,054	2,414	
MLAB memory (Kbit)	463	873	1,173	1,448	1,852	2,098	2,532	2,906	
Block memory (KByte)	8,000	10,510	11,800	13,660	15,100	17,260	20,540	24,140	
Variable-precision DSP blocks	240	396	600	800	920	1,045	1,092	1,156	
18 x 19 multipliers	480	792	1,200	1,600	1,840	2,090	2,184	2,312	
Fractional PLLs (1)	10	10	12	12	12	12	16	16	
GPI0	480	480	544	544	704	704	704	704	
LVDS transmitter (TX) (2)	68	68	120	120	160	160	156	160	
LVDS receiver (RX) (2)	80	80	136	136	176	176	172	176	
PCIe hard IP blocks	1	1	2	2	2	2	2	2	
Hard memory controllers	2	2	4	4	4	4	4	4	

Notes to Table 1-2:

Arria V Device Handbook Volume 1: Device Overview and Datasheet

⁽¹⁾ The total number of available fractional PLLs is a combination of general-purpose and transceiver PLLs. Transceiver fractional PLLs that are not used by the transceiver I/O can be used as general-purpose fractional PLLs.

⁽²⁾ For the LVDS channels count for each package, refer to the High-Speed Differential I/O Interfaces with DPA in Arria V Devices chapter.

Table 1–3. Maximum Resource Counts for Arria V GT, SX, and ST Devices—*Preliminary*

Faching	Arria V GT Device		Arria V S	X Device	Arria V ST Device		
Feature	5AGTD3	5AGTD7	5ASXB3	5ASXB5	5ASTD3	5ASTD5	
ALMs	136,880	190,240	132,075	174,340	132,075	174,340	
LE (K)	362.73	504.14	350	462	350	462	
M10K memory blocks	1,726	2,414	1,729	2,282	1,729	2,282	
MLAB memory (Kb)	2,098	2,906	2,014	2,658	2,014	2,658	
Block memory (KB)	17,260	24,140	17,288	22,820	17,288	22,820	
Variable-precision DSP blocks	1,045	1,156	809	1,068	809	1,068	
18 x 19 multipliers	2,090	2,312	1,618	2,186	1,618	2,186	
FPGA Fractional PLLs (2)	12	16	TBD	TBD	TBD	TBD	
HPS PLLs (2)	_	_	TBD	TBD	TBD	TBD	
FPGA GPIO	704	704	528	528	528	528	
HPS I/O	_	_	216	216	216	216	
LVDS TX (1)	160	160	120	120	120	120	
LVDS RX (1)	176	176	120	120	120	120	
PCIe hard IP blocks	2	2	2	2	2	2	
Hard memory controllers	4	4	3	3	3	3	
HPS memory controllers	_	_	1	1	1	1	
ARM Cortex–A9 MPCore processor	_	_	Dual-core	Dual-core	Dual-core	Dual-core	

Notes to Table 1-3:

⁽¹⁾ For the LVDS channels count for each package, refer to the High-Speed Differential I/O Interfaces with DPA in Arria V Devices chapter.

⁽²⁾ The total number of available fractional PLLs is a combination of general-purpose and transceiver PLLs. Transceiver fractional PLLs, when not used by the transceiver I/O, can be used as a general-purpose fractional PLL.

Table 1–4 lists the Arria V package plan. The package plan shows the GPIO counts, the maximum number of 6-Gbps transceivers available, and the maximum number of 10-Gbps transceivers available per density and package. Various combinations of 6-Gbps and 10-Gbps transceiver counts are available.

Table 1–4. Package Plan for Arria V Devices —Preliminary (1)

Varients Devices		F896 (31 mm) Flip Chip		F1152 (35 mm) Flip Chip		F1517 (40 mm) Flip Chip						
varients	Devices	GPIO	XCVR	GPIO (2)	HPS I/O	XCVR	GP10	HPS I/O	XCVR	GP10	HPS I/O	XCVR
	5AGXA1	▲ 336	9	▲ 480	_	12	_	_	_	_	_	_
	5AGXA3	336	9	480	_	12	_		_	_	_	
	5AGXA5	▲ 336	9	384		18	544	_	24	_	_	_
Arria V GX	5AGXA7	₹ 336	9	384	_	18	544		24	_	_	_
(3)	5AGXB1	_	_	384	_	18	544		24	704	_	24
	5AGXB3	_	_	384		18	544	_	24	704	_	24
	5AGXB5	_	_	_	_	_	544		24	704	_	36
	5AGXB7	_	_	_	_	_	544		24	704	_	36
Arria V GT	5AGTD3	_	_	7 384		12, 2	544	_	12, 4	704	_	12, 4
(4), (5)	5AGTD7	_	_	_	_	_	544		12, 4	704	_	12, 8
Arria V SX	5ASXB3	_	_	1 78	216	12	350	216	18	▲ 528	216	30
(3)	5ASXB5	_	_	178	216	12	350	216	18	528	216	30
Arria V ST	5ASTD3			1 78	216	6, 2	▲ 350	216	12, 2	▲ 528	216	12, 6
(4), (5)	5ASTD5	_		178	216	6, 2	350	216	12, 2	528	216	12, 6

Notes to Table 1-4:

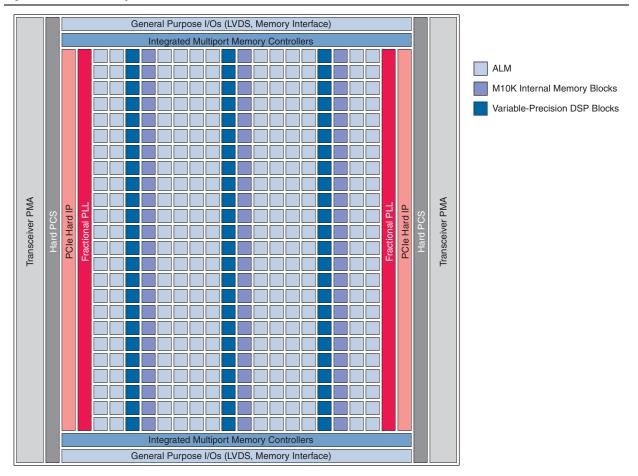
Arria V Device Handbook Volume 1: Device Overview and Datasheet

⁽¹⁾ The arrows indicate the package vertical migration capability. Vertical migration allows you to migrate across device densities for devices having the same dedicated pins, configuration pins, and power pins for a given package.

⁽²⁾ In the F896 package, the PCIe hard IP block on the right side of the 5AGXA5, 5AGXA7, 5AGXB1, 5AGXB3, and 5AGTD3 devices supports x1 for Gen1 and Gen2 data rates.

⁽³⁾ The transceiver counts listed are for 6-Gbps transceivers.

⁽⁴⁾ The transceiver counts listed are for 6-Gbps and 10-Gbps transceivers, respectively.


⁽⁵⁾ You can alternatively configure any pair of 10-Gbps channels as six 6-Gbps channels. For instance, you can alternatively configure the 5AGTD7 device in the F1517 package as eighteen 6-Gbps and six 10-Gbps, twenty-four 6-Gbps and four 10-Gbps, or thirty 6-Gbps and two 10-Gbps channels.

Low-Power Serial Transceivers

Arria V devices deliver the industry's lowest power 10-Gbps transceivers at less than 140 mW and 6-Gbps transceivers at less than 100 mW power consumption per channel. Arria V transceivers are designed to be standard compliant for a wide range of protocols and data rates.

The transceivers are positioned on the left and right outer edges of the device, as shown in Figure 1–1.

Figure 1-1. Device Chip Overview for Arria V Devices (1), (2)

Notes to Figure 1-1:

- (1) This figure represents an Arria V device with transceivers. Other Arria V devices may have a different floor plan than the one shown here.
- (2) This figure is a graphical representation of a top view of the silicon die, which corresponds to a reverse view for flip chip packages.

PMA Support

To prevent core and I/O noise from coupling into the transceivers, the PMA block is isolated from the rest of the chip, ensuring optimal signal integrity. The transceiver channels consist of the PMA, PCS, and clock networks. You can also use the unused receiver PMA channels as additional transmit PLLs.

Table 1–5 lists the transceiver PMA features.

Table 1-5. Transceiver PMA Features for Arria V Devices

Features	Capability
Backplane support	Up to 16" FR4 PCB fabric drive capability at up to 6.5536 Gbps
Chip-to-chip support	Up to 10.3125 Gbps
PLL-based clock recovery	Superior jitter tolerance
Programmable serializer and deserializer (SERDES)	Flexible SERDES width
Equalization and pre-emphasis	Up to 6 dB of pre-emphasis and 4 dB of equalization
Ring oscillator transmit PLLs	611 Mbps to 10.3125 Gbps
Input reference clock range	27 MHz to 710 MHz
Transceiver dynamic reconfiguration	Allows reconfiguration of single channels without affecting operation of other channels

PCS Support

The Arria V core logic connects to the PCS through an 8-, 10-, 16-, 20-, 32-, or 40-bit interface, depending on the transceiver data rate and protocol. Arria V devices contain PCS hard IP to support PCIe Gen1 and Gen2, XAUI, GbE, Serial RapidIO® (SRIO), and CPRI protocols. All other standard and proprietary protocols from 611 Mbps to 6.5536 Gbps are supported through the custom double-width mode (up to 6.5536 Gbps) and custom single-width mode (up to 3.75 Gbps) transceiver PCS hard IP. A dedicated 80-bit interface to the core logic connects directly from the PMA, bypassing the PCS hard IP, to support all protocols beyond 6.5536 Gbps up to 10.3125 Gbps.

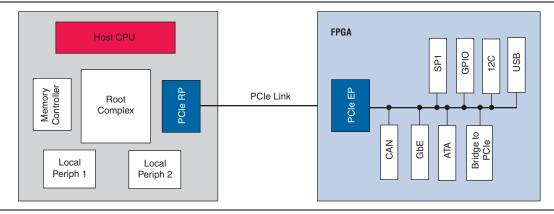
Table 1–6 lists the transceiver PCS features.

Table 1–6. Transceiver PCS Features for Arria V Devices (Part 1 of 2)

PCS Support (1)	Data Rates (Gbps)	Transmitter Data Path	Receiver Data Path
Custom single- and double-width modes	0.61 to ~6.5536	Phase compensation FIFO, byte serializer, and 8B/10B encoder	Word aligner, 8B/10B decoder, byte deserializer, and phase compensation FIFO
PCIe Gen1: x1, x2, x4, x8 PCIe Gen2: x1, x2, x4 (2)	2.5 and 5.0	The same as custom single- and double-width modes, plus PIPE 2.0 interface to the core logic	The same as custom single- and double-width modes, plus rate match FIFO and PIPE 2.0 interface to the core logic
GbE	1.25	The same as custom single- and double-width modes	The same as custom single- and double-width modes, plus rate match FIFO

Table 1–6. Transceiver PCS Features for Arria V Devices (Part 2 of 2)

PCS Support (1)	Data Rates (Gbps)	Transmitter Data Path	Receiver Data Path	
XAUI	3.125	The same as custom single- and double-width modes, plus the XAUI state machine for bonding four channels	The same as custom single- and double-width modes, plus the XAU state machine for realigning four channels, and deskew FIFO circuitry	
SRI0	1.25 to 6.25	The same as custom single- and double-width modes	The same as custom single- and double-width modes	
SDI	0.27 ⁽³⁾ , 1.485, 2.97	Phase compensation FIFO, byte serializer	Byte deserializer and phase compensation FIFO	
Serial ATA	1.5, 3.0, 6.0	Phase compensation FIFO, byte serializer, 8B/10B encoder	Phase compensation FIFO, byte deserializer, word aligner, and 8B/10B decoder	
CPRI (4)	0.6144 to 6.144	The same as custom single- and double-width modes, plus the TX deterministic latency	The same as custom single- and double-width modes, plus the RX deterministic latency	
GPON (5)	1.25 and 2.5	Phase compensation FIFO and byte serializer	Phase compensation FIFO and byte deserializer	


Notes to Table 1-6:

- (1) Data rates above 6.5536 Gbps up to 10.3125 Gbps, such as 10GBASE-R, are supported through soft PCS.
- (2) PCIe Gen2 is supported with the PCIe hard IP only.
- (3) The 0.27-Gbps data rate is supported using oversampling user logics that you must implement in the FPGA fabric.
- (4) CPRI data rates above $6.5536~\mathrm{Gbps}$, such as $9.8304~\mathrm{Gbps}$, are supported through soft PCS.
- (5) The GPON standard does not support burst mode.

PCIe Gen1 and Gen2 Hard IP

Arria V devices contain PCIe hard IP designed for performance, ease-of-use, and increased functionality. The PCIe hard IP consists of the PHY MAC, data link, and transaction layers. The PCIe hard IP supports PCIe Gen2 end point and root port for up to x4 lane configurations, and PCIe Gen1 end point and root port for up to x8 lane configurations. PCIe endpoint support includes multifunction support for up to eight functions, as shown in Figure 1–2.

Figure 1–2. PCIe Multifunction for Arria V Devices

The Arria V PCIe hard IP operates independently from the core logic, which allows the PCIe link to wake up and complete link training in less than 100 ms, while the Arria V device completes loading the programming file for the rest of the device. In addition, the Arria V PCIe hard IP has improved end-to-end data path protection using ECC.

FPGA GPIOs

Arria V devices offer highly configurable GPIOs. The following list describes the many features of the GPIOs:

- Programmable bus hold and weak pull-up.
- LVDS output buffer with programmable differential output voltage (V_{OD}) and programmable pre-emphasis.
- Dynamic on-chip parallel termination (R_T OCT) for all I/O banks with OCT calibration to limit the termination impedance variation.
- On-chip dynamic termination to swap between serial and parallel termination, depending on whether there is reading or writing on a common bus for signal integrity.
- Configurable unused voltage reference (VREF) pins as user I/Os.
- Easy timing closure support using the hardened read FIFO in the input register path, and delay-locked loop (DLL) delay chain with fine and coarse architecture.

External Memory

Arria V devices support up to four hardened memory controllers for DDR3 and DDR2 SDRAM. Each controller supports 8- to 32-bit components up to 4 gigabits (Gb) in density with two-chip select and optional ECC. Arria V devices do not support DDR3 SDRAM leveling.

Arria V devices also support soft memory controllers for DDR3, DDR2, LPDDR2, and LPDDR SDRAM, RLDRAM II, QDR II, and QDR II+ SRAM for maximum flexibility.

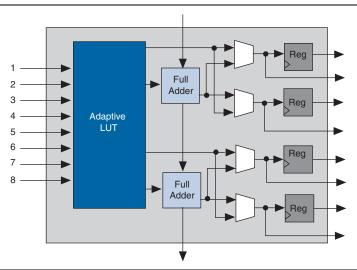
Table 1–7 lists the external memory interface block performance.

Table 1–7. External Memory Interface Performance for Arria V Devices

Interface	Voltage (V)	Hard Controller (MHz)	Soft Controller (MHz)
	1.5	533	667
DDR3 SDRAM	1.35	533	667
	1.25	400	400
DDR2 SDRAM	1.8	400	400
DDRZ 3DRAW	1.5	400	400
RLDRAM II	1.8	(1)	400
QDR II+ SRAM	1.8	(1)	400
QDN II+ SNAW	1.5	(1)	400
QDR II SRAM	1.8	(1)	400
QUA II SAAIVI	1.5	(1)	400
DDR II+ SRAM (2)	1.8	(1)	400
DUIT II T STAW	1.5	(1)	400
LPDDR SDRAM (2)	1.8	(1)	200
LPDDR2 SDRAM (2)	1.2	(1)	400

Notes to Table 1-7:

⁽¹⁾ These memory interfaces are not supported in the hard memory controller.


⁽²⁾ These memory interfaces are not available as Altera[®] IP.

ALM

Arria V devices use a 28-nm ALM as the basic building block of the device fabric. The ALM shown in Figure 1–3 uses an 8-input fracturable look-up table (LUT) with four dedicated registers to help improve timing closure in register-rich designs and achieve an even higher design packing capability than previous generations.

You can configure up to 25% of the ALMs in Arria V devices as distributed MLABs. For more information, refer to "Embedded Memory" on page 1–14.

Figure 1-3. ALM for Arria V Devices

Variable-Precision DSP Block

Arria V devices feature a variable-precision DSP block that you can configure to support signal processing with precision ranging from 9×9 , 18×19 , and 27×27 bits natively.

You can independently configure each DSP block during compilation as a triple 9×9 , a dual 18×19 multiply, or a single 27×27 . With a dedicated 64-bit cascade bus, you can cascade multiple variable-precision DSP blocks to implement even higher precision DSP functions efficiently.

The variable precision DSP block also supports these features:

- 64-bit accumulator that is the largest in the industry,
- Double accumulator
- Hard pre-adder that is available in both 18- and 27-bit modes
- Cascaded output adders for efficient systolic FIR filters
- Dynamic coefficients
- 18-bit internal coefficient register banks
- Enhanced independent multiplier operation
- Efficient support for single floating point arithmetic
- Inferability of all modes by the Altera Complete Design Suite

Table 1–8 lists the accommodation of different configurations in a DSP block.

Table 1-8. Variable-Precision DSP Block Configurations for Arria V Devices

Multiplier Size (Bit)	DSP Block Resources	Expected Usage
Three 9 x 9	1 variable-precision DSP block	Low precision fixed point for video applications
Two18 x 19	1 of variable-precision DSP block	Medium precision fixed point in FIR filters
Two 18 x 19 with accumulate	1 variable-precision DSP block	FIR filters
One 27 x 27	1 variable-precision DSP block	Single precision floating point

Table 1-9 lists the number of multipliers in Arria V devices.

Table 1-9. Number of Multipliers in Arria V Devices

		Variable	Independent Input and Output Multiplications Operator			18 x 19	18 x 18 Multiplier
Variants	Devices	Devices Precision DSP Blocks	9 x 9 Multipliers	18 x 19 Multipliers	27 x 27 Multipliers	Multiplier Adder Mode	Adder Summed with 36-bit Input
	5AGXA1	240	720	480	240	240	240
	5AGXA3	396	1,188	792	396	396	396
	5AGXA5	600	1,800	1,200	600	600	600
Arria V GX	5AGXA7	800	2,400	1,600	800	800	800
Allia V UA	5AGXB1	920	2,760	1,840	920	920	920
	5AGXB3	1,045	3,135	2,090	1,045	1,045	1,045
	5AGXB5	1,092	3,276	2,184	1,092	1,092	1,092
	5AGXB7	1,139	3,417	2,278	1,139	1,139	1,139
Arria V GT	5AGTD3	1,045	3,135	2,090	1,045	1,045	1,045
Allia V G I	5AGTD7	1,139	3,417	2,278	1,139	1,139	1,139
Arria V SX	5ASXB3	809	2,427	1,618	809	809	809
AIIIa V SA	5ASXB5	1,068	3,204	2,136	1068	1,068	1,068
Arria V ST	5ASTD3	809	2,427	1,618	809	809	809
Allia V SI	5ASTD5	1,068	3,204	2,136	1068	1,068	1,068

Embedded Memory

The Arria V memory blocks are flexible and designed to provide an optimal amount of small- and large-sized memory arrays. Arria V devices contain two types of embedded memory blocks:

- 640-bit MLAB blocks—for wide and shallow memories. You can use up to 25% of the device LABs as MLAB. The MLAB operates at up to 500 MHz.
- 10-Kb M10K blocks—for larger memory configurations. The M10K embedded memory operates at up to 400 MHz.

Table 1–10 lists the supported memory configurations for Arria V devices.

Memory Block Depth (bits) **Programmable Widths** MLAB 32 x16, x18, or x20 256 x40 or x32 512 x20 or x16 1K x10 or x8 M₁₀K 2K x5 or x4 4K х2 8K х1

Table 1–10. Embedded Memory Block Configuration for Arria V Devices

Dynamic and Partial Reconfiguration

Dynamic reconfiguration enables transceiver data rates or encoding schemes to be changed dynamically while maintaining data transfer on adjacent transceiver channels in Arria V devices. Dynamic reconfiguration is ideal for applications requiring on-the-fly multi-protocol or multi-rate support. You can reconfigure the PMA, PCS, and PCIe hard IP blocks with dynamic reconfiguration.

Partial reconfiguration allows you to reconfigure part of the device while other sections remain running. Partial reconfiguration is required in systems where the uptime is critical because it allows you to make updates or adjust functionality without disrupting other services. While lowering power and cost, partial reconfiguration also increases the effective logic density by removing the necessity to place the device functions that do not operate simultaneously. Instead, you can store these functions in external memory and load them as required. This reduces the size of the required device by allowing multiple applications on a single device, which saves board space and reduces power consumption.

Altera simplifies the time-intensive task of partial reconfiguration by building the partial reconfiguration capability on top of the proven incremental compile and design flow in the Quartus[®] II software. With this Altera solution, you do not need to know all the intricate device architecture details to perform a partial reconfiguration.

Partial reconfiguration is supported through the FPP x16 configuration interface. You can seamlessly use partial reconfiguration in tandem with dynamic reconfiguration to enable partial reconfiguration of both the core and transceiver simultaneously.

Clock Networks and PLL Clock Sources

The Arria V clock network architecture is based on Altera's proven global, quadrant, and peripheral clock structure, which is supported by dedicated clock input pins and fractional PLLs. Arria V devices have 16 global clock networks capable of up to 625 MHz operation. The Quartus II software identifies all unused sections of the clock network and powers them down, which reduces power consumption.

Arria V devices have up to 16 PLLs with 18 output counters per PLL. One fractional PLL can use up to 18 output counters and two adjacent fractional PLLs share the 18 output counters. You can use fractional PLLs to reduce the number of oscillators required on your board, as well as reduce the clock pins used in the device by synthesizing multiple clock frequencies from a single reference clock source. You can use the PLLs for frequency synthesis, on-chip clock deskew, jitter attenuation, dynamic phase-shift, zero delay buffers, counters reconfiguration, bandwidth reconfiguration, programmable output clock duty cycles, PLL cascading, and reference clock switchover.

Arria V devices use a fractional PLL architecture in addition to the historical integer PLL. When you use fractional PLL mode, you can use the PLLs for precision fractional-N frequency synthesis—removing the need for an off-chip reference clock. Transceiver fractional PLLs, when not used by the Transceiver I/O, can be used as general-purpose fractional PLLs by the FPGA fabric.

Enhanced Configuration and Configuration via Protocol

Arria V devices support 3.3-V programming voltage and the following configuration modes:

- active serial (AS)
- passive serial (PS)
- fast passive parallel (FPP)
- CvP
- Configuration via HPS
- configuration through JTAG

You can configure Arria V devices through PCIe using CvP instead of an external flash or ROM. The CvP mode offers the fastest configuration rate and flexibility with the easy-to-use PCIe hard IP block interface. The Arria V CvP implementation conforms to the PCIe 100-ms power-up-to-active time requirement.

For more information regarding CvP, refer to the Configuration via Protocol (CvP) Implementation in Altera FPGAs User Guide.

Table 1–11 lists the configuration modes that Arria V devices support.

Table 1–11. Configuration Modes and Features for Arria V Devices

Mode	Data Width (Bit)	Maximum Clock Rate (MHz)	Maximum Data Rate (Mbps)	Decompression	Design Security	Remote System Update	Partial Reconfiguration
AS	1, 4	100	_	~	✓	✓	_
PS	1	125	125	~	✓	_	_
FPP	8, 16	125	_	~	✓	Parallel flash loader	16-bit only
CvP	x1, x2, x4, x8 ⁽¹⁾	_	_	~	✓	✓	✓
HPS	32	125	_	~	✓	Parallel flash loader	✓
JTAG	1	33	33	_		_	_

Note to Table 1-11:

Power Management

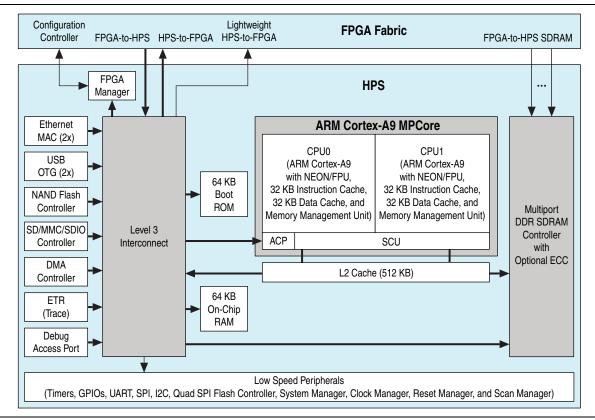
Arria V devices leverage FPGA architectural features and process technology advancements to reduce the total device core power consumption by as much as 50% when compared with Stratix IV devices at the same performance level.

Additionally, Arria V devices have a number of hard IP blocks that not only reduce logic resources but also deliver substantial power savings when compared with soft implementations. The list includes PCIe Gen1 and Gen2, XAUI, GbE, SRIO, GPON and CPRI protocols. The hard IP blocks consume up to 25% less power than equivalent soft implementations.

⁽¹⁾ Number of lanes instead of bits.

Arria V transceivers are also designed for power efficiency. As a result, the transceiver channels consume 50% less power than the previous generation of Arria devices.

SoC FPGA with HPS


Each SoC FPGA device combines an FPGA fabric and an HPS in a single device. This combination delivers the flexibility of programmable logic with the power and cost savings of hard IP in the following ways:

- Reduces board space, system power, and bill of materials cost by eliminating a discrete embedded processor
- Allows you to differentiate the end product in both the hardware and software, and to support virtually any interface standard
- Extends the product life and revenue through in-field hardware and software updates

Features of the HPS

The HPS consists of a dual-core ARM Cortex-A9 MPCore processor, a rich set of peripherals, and a shared multiport SDRAM memory controller, as shown in Figure 1–4...

Figure 1–4. HPS with Dual-Core ARM Cortex-A9 MPCore Processor

System Peripherals

The Ethernet MAC, USB OTG controller, NAND flash controller and SD/MMC/SDIO controller modules have an integrated DMA controller. For modules without an integrated DMA controller, an additional DMA controller module provides up to eight channels for high-bandwidth data transfers. The debug access port provides interfaces to industry standard JTAG debug probes and supports ARM CoreSight debug and core traces to facilitate software development.

HPS-FPGA AXI Bridges

The HPS–FPGA bridges, which support the Advanced Microcontroller Bus Architecture (AMBA[®]) Advanced eXtensible Interface (AXITM) specifications, consist of the following bridges:

- FPGA-to-HPS AXI bridge—a high-performance bus supporting 32-, 64-, and 128-bit data widths that allows the FPGA fabric to master transactions to the slaves in the HPS
- HPS-to-FPGA AXI bridge—a high-performance bus supporting 32-, 64-, and 128-bit data widths that allows the HPS to master transactions to the slaves in the FPGA fabric.
- Lightweight HPS-to-FPGA AXI bridge—a lower performance 32-bit width bus that allows the HPS to master transactions to the slaves in the FPGA fabric.

The HPS–FPGA AXI bridges also allow the FPGA fabric to access the memory shared by one or both microprocessors, and provide asynchronous clock crossing with the clock from the FPGA fabric.

HPS SDRAM Controller Subsystem

The HPS SDRAM controller subsystem contains a multiport SDRAM controller and DDR PHY that is shared between the FPGA fabric (through the FPGA-to-HPS SDRAM interface), the level 2 (L2) cache, and the level 3 (L3) system interconnect. The FPGA-to-HPS SDRAM interface supports AMBA AXI and Avalon® Memory-Mapped (Avalon-MM) interface standards, and provides up to four ports with separate read and write directions.

To maximize memory performance, the HPS SDRAM controller subsystem supports command and data reordering, deficit round-robin arbitration with aging, and high-priority bypass features. The HPS SDRAM controller subsystem supports DDR2, DDR3, LPDDR, or LPDDR2 devices up to 4 Gb and runs up to 533 MHz (1066 Mbps data rate).

For easy migration, the FPGA-to-HPS SDRAM interface is compatible with the interface of the soft SDRAM memory controller IPs and hard SDRAM memory controllers in the FPGA fabric.

FPGA Configuration and Processor Booting

The FPGA fabric and HPS in the SoC FPGA are powered independently. You can reduce the clock frequencies or gate the clocks to reduce dynamic power, or shut down the entire FPGA fabric to reduce total system power.

You can configure the FPGA fabric and boot the HPS independently, in any order, providing you with more design flexibility:

Arria V Device Handbook Volume 1: Device Overview and Datasheet

- You can boot the HPS before you power up and configure the FPGA fabric. After the system is running, the HPS reconfigures the FPGA fabric at any time under program control or through the FPGA configuration controller.
- You can power up both the HPS and the FPGA fabric together, configure the FPGA fabric first, and then upload the boot code to the HPS from the FPGA fabric.

Hardware and Software Development

For hardware development, you can configure the HPS and connect your soft logic in the FPGA fabric to the HPS interfaces using the Qsys system integration tool in the Quartus II software.

For software development, the ARM-based SoC FPGA devices inherit the rich software development ecosystem available for the ARM Cortex-A9 MPCore processor. The software development process for Altera SoC FPGAs follows the same steps as those for other SoC devices. Altera also provides support for the Linux and VxWorks® operating systems.

You can begin device-specific firmware and software development on the Altera SoC FPGA Virtual Target. The Virtual Target is a PC-based fast-functional simulation of a target development system—a model of a complete development board that runs on a PC. The Virtual Target enables the development of device-specific production software that can run unmodified on actual hardware.

Ordering Information

This section describes the ordering information for Arria V devices.

Figure 1–5 and Figure 1–6 show the ordering codes for Arria V devices.

Figure 1-5. Ordering Information for Arria V GX and GT Devices

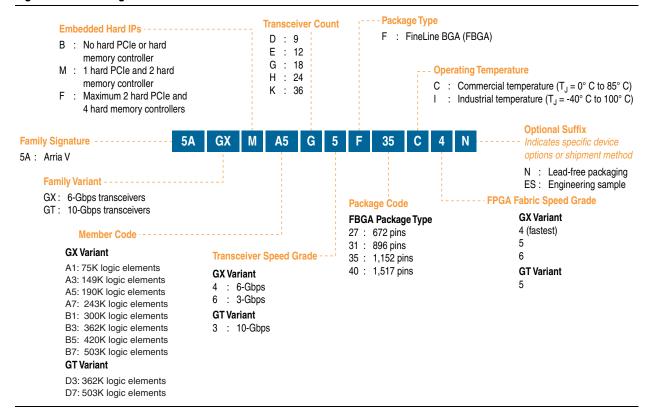
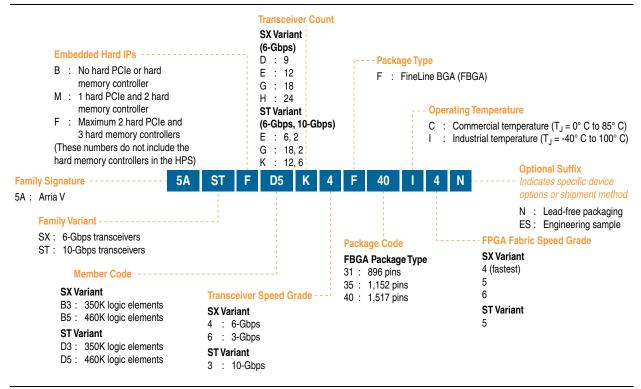



Figure 1-6. Ordering Information for Arria V SX and ST Devices

Document Revision History

Table 1–12 lists the revision history for this chapter.

Table 1-12. Document Revision History

Date	Version	Changes
		■ Updated Table 1–1, Table 1–2, Table 1–3, Table 1–4, Table 1–6, Table 1–7, Table 1–9, and Table 1–10.
		Added "SoC FPGA with HPS" section.
November 2011	1.1	■ Updated "Clock Networks and PLL Clock Sources" and "Ordering Information" sections.
		■ Updated Figure 1–5.
		■ Added Figure 1–6.
		Minor text edits.
August 2011	1.0	Initial release.

Arria V Device Handbook Volume 1: Device Overview and Datasheet

2. Device Datasheet for Arria V Devices

AV-51002-1.1

This chapter describes the electrical characteristics, switching characteristics, and configuration specifications for Arria® V devices. Electrical characteristics include operating conditions and power consumption. Switching characteristics include transceiver specifications, and core and periphery performance. Configuration specifications include power-on reset (POR) specification, initialization clock source option and timing, various configuration mode timing parameters, remote system upgrades timing, and user watchdog internal oscillator frequency specification. This chapter also describes I/O timing, including programmable I/O element (IOE) delay and programmable output buffer delay.

For more information about the densities and packages of devices in the Arria V family, refer to the *Overview for Arria V Device Family* chapter.

Electrical Characteristics

The following sections describe the electrical characteristics of Arria V devices.

Operating Conditions

When you use Arria V devices, they are rated according to a set of defined parameters. To maintain the highest possible performance and reliability of the Arria V devices, you must consider the operating requirements described in this chapter.

Arria V devices are offered in commercial and industrial grades. Commercial devices are offered in –4 (fastest), –5, and –6 speed grades. Industrial grade devices are offered in the –5 speed grade.

Absolute Maximum Ratings

Absolute maximum ratings define the maximum operating conditions for Arria V devices. The values are based on experiments conducted with the devices and theoretical modeling of breakdown and damage mechanisms. The functional operation of the device is not implied for these conditions.

© 2011 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Conditions other than those listed in Table 2–1 may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device.

Table 2–1. Absolute Maximum Ratings for Arria V Devices—*Preliminary*

Symbol	Description	Minimum	Maximum	Unit
V _{CC}	Core voltage and periphery circuitry power supply	-0.5	1.35	V
V _{CCPGM}	Configuration pins power supply	-0.5	3.75	V
V _{CCAUX}	Auxiliary supply	-0.5	3.75	V
V _{CCBAT}	Battery back-up power supply for design security volatile key register	-0.5	3.75	V
V_{CCPD}	I/O pre-driver power supply	-0.5	3.75	V
V _{CCIO}	I/O power supply	-0.5	3.9	V
V_{CCD_FPLL}	Phase-locked loop (PLL) digital power supply	-0.5	1.8	V
V _{CCA_FPLL}	PLL analog power supply	-0.5	3.75	V
V _{CCA_GXB}	Transceiver high voltage power	-0.5	3.75	V
V _{CCH_GXB}	Transmitter output buffer power	-0.5	1.8	V
V _{CCR_GXB}	Receiver power	-0.5	1.21	V
V _{CCT_GXB}	Transmitter power	-0.5	1.21	V
V_{CCL_GXB}	Clock network power	-0.5	1.21	V
V _I	DC input voltage	-0.5	4	V
I _{OUT}	DC output current per pin	-25	40	mA
T _J	Operating junction temperature	-55	125	°C
T _{STG}	Storage temperature (No bias)	-65	150	°C

Maximum Allowed Overshoot and Undershoot Voltage

During transitions, input signals may overshoot to the voltage listed in Table 2-2 and undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.

Table 2–2 lists the maximum allowed input overshoot voltage and the duration of the overshoot voltage as a percentage of device lifetime. The maximum allowed overshoot duration is specified as a percentage of high time over the lifetime of the device. A DC signal is equivalent to 100% duty cycle. For example, a signal that overshoots to 3.95 V can only be at 3.95 V for $\sim 5\%$ over the lifetime of the device; for a device lifetime of 10 years, this amounts to half a year.

Table 2–2. Maximum Allowed Overshoot During Transitions for Arria V Devices—*Preliminary*

Symbol	Description	Condition (V)	Overshoot Duration as % of High Time	Unit
		3.7	100	%
		3.75	59.79	%
		3.8	33.08	%
		3.85	18.45	%
Vi (AC)	AC input voltage	3.9	10.36	%
		3.95	5.87	%
		4	3.34	%
		4.05	1.92	%
		4.1	1.11	%

Recommended Operating Conditions

This section lists the functional operation limits for the AC and DC parameters for Arria V devices. Table 2–3 lists the steady-state voltage values expected from Arria V devices. Power supply ramps must all be strictly monotonic, without plateaus.

Table 2-3. Recommended Operating Conditions for Arria V Devices—Preliminary (Part 1 of 2)

Symbol	Description	Condition	Minimum	Typical	Maximum	Unit
V _{CC}	Core voltage and periphery circuitry power supply	_	1.07	1.1	1.13	V
V _{CCAUX}	Auxiliary supply	_	2.375	2.5	2.625	V
	I/O pre-driver (3.3 V) power supply	_	3.135	3.3	3.465	V
V _{CCPD} (1)	I/O pre-driver (3.0 V) power supply	_	2.85	3.0	3.15	V
	I/O pre-driver (2.5 V) power supply	_	2.375	2.5	2.625	V

Table 2-3. Recommended Operating Conditions for Arria V Devices—Preliminary (Part 2 of 2)

Symbol	Description	Condition	Minimum	Typical	Maximum	Unit
	I/O buffers (3.3 V) power supply	_	3.135	3.3	3.465	V
	I/O buffers (3.0 V) power supply	_	2.85	3.0	3.15	V
	I/O buffers (2.5 V) power supply	_	2.375	2.5	2.625	V
l v	I/O buffers (1.8 V) power supply	_	1.71	1.8	1.89	V
V _{CCIO}	I/O buffers (1.5 V) power supply	_	1.425	1.5	1.575	V
	I/O buffers (1.35 V) power supply	_	1.283	1.35	1.418	V
	I/O buffers (1.25 V) power supply	_	1.19	1.25	1.31	V
	I/O buffers (1.2 V) power supply	_	1.14	1.2	1.26	V
	Configuration pins (3.3 V) power supply	_	3.135	3.3	3.465	V
M	Configuration pins (3.0 V) power supply	_	2.85	3.0	3.15	V
V _{CCPGM}	Configuration pins (2.5 V) power supply	_	2.375	2.5	2.625	V
	Configuration pins (1.8 V) power supply	— — — — — — — — — —	1.71	1.8	1.89	V
V _{CCA_FPLL}	PLL analog voltage regulator power supply	_	2.375	2.5	2.625	V
V _{CCD_FPLL}	PLL digital voltage regulator power supply	_	1.425	1.5	1.575	V
V _{CCBAT} (2)	Battery back-up power supply (For design security volatile key register)	_	1.2	_	3.0	V
V _I	DC input voltage	_	-0.5	_	3.6	V
V ₀	Output voltage	_	0	_	V _{CCIO}	V
т	Operating junction temperature	Commercial	0	_	85	°C
T _J	Operating junction temperature	Industrial	-40	_	100	°C
+ (3)	Dower cumply romp time		200 μs	_	100 ms	_
t _{RAMP} (3)	Power supply ramp time		200 μs	_	4 ms	_

Notes to Table 2-3:

- (1) V_{CCPD} must be 2.5 V when V_{CCIO} is 2.5, 1.8, 1.5, 1.35, 1.25 or 1.2 V. V_{CCPD} must be 3.0 V when V_{CCIO} is 3.0 V.
- (2) If you do not use the design security feature in Arria V devices, connect V_{CCBAT} to a 1.5-V, 2.5-V or 3.0-V power supply. Arria V POR circuitry monitors V_{CCBAT} . Arria V devices do not exit POR if V_{CCBAT} stays low.
- (3) When power is applied to an Arria V device, a POR occurs if the power supply reaches the recommended operating range in the maximum power supply ramp.

Table 2–4 lists the transceiver power supply recommended operating conditions for Arria V devices.

Table 2-4. Transceiver Power Supply Operating Conditions for Arria V GX and GT Devices—Preliminary (Part 1 of 2)

Symbol	Description	Minimum	Typical	Maximum	Unit
V _{CCA_GXBL}	Transceiver high voltage power (left side)	2.375	2.5	2.625	V
V _{CCA_GXBR}	Transceiver high voltage power (right side)	2.375 2.5		2.023	V
V _{CCR_GXBL}	Receiver power (left side)	1.07	1.1	1.13	V
V _{CCR_GXBR}	Receiver power (right side)	1.07	1.1	1.13	V
V _{CCT_GXBL}	Transmitter power (left side)	1.07	1.1	1.13	V
V _{CCT_GXBR}	Transmitter power (right side)	1.07	1.1	1.13	V

Table 2-4. Transceiver Power Supply Operating Conditions for Arria V GX and GT Devices—Preliminary (Part 2 of 2)

Symbol	Description	Minimum	Typical	Maximum	Unit
V _{CCH_GXBL}	Transmitter output buffer power (left side)	1.425	1.5	1.575	V
V _{CCH_GXBR}	Transmitter output buffer power (right side)	1.425	1.0	1.575	V
V _{CCL_GXBL}	Clock network power (left side)	1.07	1.1	1.13	V
V _{CCL_GXBR}	Clock network power (right side)	1.07	1.1	1.13	V

Table 2–5 lists the steady-state voltage and current values expected from Arria V system-on-a-chip (SoC) FPGA with ARM®-based hard processor system (HPS). Power supply ramps must all be strictly monotonic, without plateaus.

Table 2-5. HPS Power Supply Operating Conditions for Arria V Sx and ST Devices—Preliminary

Symbol	Description	Minimum	Typical	Maximum	Unit
V _{CC_HPS}	HPS Core voltage and periphery circuitry power supply	1.07	1.1	1.13	V
	HPS I/O pre-driver (3.3 V) power supply	3.135	3.3	3.465	V
V_{CCPD_HPS}	HPS I/O pre-driver (3.0 V) power supply	2.85	3.0	3.15	V
	HPS I/O pre-driver (2.5 V) power supply	2.375	2.5	1.13 3.465	V
	HPS I/O buffers (3.3 V) power supply	3.135	1.07 1.1 1.13 3.135 3.3 3.465 2.85 3.0 3.15 2.375 2.5 2.625 3.135 3.3 3.465 2.85 3.0 3.15 2.375 2.5 2.625 1.71 1.8 1.89 1.425 1.5 1.575 1.14 1.2 1.26 3.135 3.3 3.465 2.85 3.0 3.15 2.375 2.5 2.625 1.71 1.8 1.89	V	
	HPS I/O buffers (3.0 V) power supply	2.85	3.0	3.15	V
M	HPS I/O buffers (2.5 V) power supply	2.375	2.5	2.625	V
VCCIO_HPS	HPS I/O buffers (1.8 V) power supply	oly 1.07 1.1 1.13 3.135 3.3 3.465 2.85 3.0 3.15 2.375 2.5 2.625 3.135 3.3 3.465 2.85 3.0 3.15 2.375 2.5 2.625 1.71 1.8 1.89 1.425 1.5 1.575 1.14 1.2 1.26 3.135 3.3 3.465 2.85 3.0 3.15 2.375 2.5 2.625 1.71 1.8 1.89	V		
	HPS I/O buffers (1.5 V) power supply	1.425	1.5	1.575	V
	HPS I/O buffers (1.2 V) power supply	1.14	1.2	1.13 3.465 3.15 2.625 3.465 3.15 2.625 1.89 1.575 1.26 3.465 3.15 2.625 1.89 1.89	V
	HPS reset and clock input pins (3.3 V) power supply	3.135	3.3	1.13 3.465 3.15 2.625 3.465 3.15 2.625 1.89 1.575 1.26 3.465 3.15 2.625 1.89	V
V _{CC_HPS} HPS Core voltage and periphery circuitry power supply 1.07 1.1 V _{CCPD_HPS} HPS I/O pre-driver (3.3 V) power supply 3.135 3.3 HPS I/O pre-driver (3.0 V) power supply 2.85 3.0 HPS I/O pre-driver (2.5 V) power supply 2.375 2.5 HPS I/O buffers (3.3 V) power supply 2.85 3.0 HPS I/O buffers (2.5 V) power supply 2.375 2.5 HPS I/O buffers (1.8 V) power supply 1.71 1.8 HPS I/O buffers (1.5 V) power supply 1.425 1.5 HPS I/O buffers (1.2 V) power supply 1.14 1.2 HPS reset and clock input pins (3.3 V) power supply 3.135 3.3 HPS reset and clock input pins (3.0 V) power supply 3.135 3.3 HPS reset and clock input pins (3.0 V) power supply 2.85 3.0 HPS reset and clock input pins (2.5 V) power supply 2.85 3.0 HPS reset and clock input pins (2.5 V) power supply 2.375 2.5 HPS reset and clock input pins (3.0 V) power supply 3.135 3.3	3.0	3.15	V		
VCCRSTCLK_HPS	HPS reset and clock input pins (2.5 V) power supply	2.375	2.5	2.625	V
	HPS reset and clock input pins (1.8 V) power supply	1.71	1.8	1.89	V
V _{CCPLL_HPS}	HPS PLL analog voltage regulator power supply	2.375	2.5	2.625	V

DC Characteristics

This section lists the supply current, I/O pin leakage current, input pin capacitance, on-chip termination tolerance, and hot socketing specifications.

Supply Current

Standby current is the current drawn from the respective power rails used for power budgeting. Use the Excel-based Early Power Estimator (EPE) to estimate supply current for your design because these currents vary greatly with the resources you use.

For more information about power estimation tools, refer to the *PowerPlay Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in the *Quartus II Handbook*.

I/O Pin Leakage Current

Table 2–6 lists the Arria V I/O pin leakage current specifications.

Table 2-6. I/O Pin Leakage Current for Arria V Devices—Preliminary

Symbol	Description	Conditions	Min	Тур	Max	Unit
I	Input pin	$V_I = 0 V \text{ to } V_{CCIOMAX}$	-30	_	30	μΑ
I _{OZ}	Tri-stated I/O pin	$V_0 = 0 \text{ V to } V_{\text{CCIOMAX}}$	-30	_	30	μΑ

Bus Hold Specifications

Table 2–7 lists the Arria V device bus hold specifications.

Table 2–7. Bus Hold Parameters for Arria V Devices—Preliminary (1)

	Symbol	Conditions	V _{CCIO} (V)												
Parameter			1.2		1.5		1.8		2.5		3.0		3.3		Unit
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Bus-hold, low, sustaining current	I _{SUSL}	V _{IN} > V _{IL} (max.)	8	1	12	_	30	1	50	_	70	_	70	1	μА
Bus-hold, high, sustaining current	I _{SUSH}	V _{IN} < V _{IH} (min.)	-8		-12	_	-30		-50	_	-70	_	-70		μА
Bus-hold, low, overdrive current	I _{ODL}	OV < V _{IN} < V _{CCIO}	_	125	_	175	_	200	_	300	_	500	_	500	μА
Bus-hold, high, overdrive current	I _{ODH}	0V < V _{IN} < V _{CCIO}	_	-125	_	-175	_	-200	_	-300	_	-500	_	-500	μА
Bus-hold trip point	V_{TRIP}	_	0.3	0.9	0.375	1.125	0.68	1.07	0.7	1.7	0.8	2	0.8	2	V

Note to Table 2-7:

Arria V Device Handbook Volume 1: Device Overview and Datasheet

 $^{(1) \}quad \text{The bus-hold trip points are based on calculated input voltages from the JEDEC standard}.$

(OCT) Specifications

If you enable on-chip termination (OCT) calibration, calibration is automatically performed at power up for I/Os connected to the calibration block. Table 2–8 lists the Arria V OCT termination calibration accuracy specifications.

Table 2–8. OCT Calibration Accuracy Specifications for Arria V Devices—*Preliminary* (1)

Combal	Description	Conditions (II)	Calibration Accuracy				
Symbol	Description	Conditions (V)	C4	C5, I5	C6	Unit	
25-Ω R _S	Internal series termination with calibration (25- Ω setting)	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	±15	±15	±15	%	
50-Ω R _S	Internal series termination with calibration (50- Ω setting)	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	±15	±15	±15	%	
$34\text{-}\Omega$ and $40\text{-}\Omega$ R_S	Internal series termination with calibration (34- Ω and 40- Ω setting)	V _{CCIO} = 1.5, 1.35, 1.25, 1.2	±15	±15	±15	%	
48- Ω , 60- Ω , and 80- Ω R _S	Internal series termination with calibration (48- Ω , 60- Ω , and 80- Ω setting)	V _{CCIO} = 1.2	±15	±15	±15	%	
50-Ω R _T	Internal parallel termination with calibration (50-Ω setting)	V _{CCIO} = 2.5, 1.8, 1.5, 1.2	-10 to +40	-10 to +40	-10 to +40	%	
$20\text{-}\Omega,~30\text{-}\Omega,\\ 40\text{-}\Omega,60\text{-}\Omega,~\text{and}\\ 120\text{-}\Omega~R_T$	Internal parallel termination with calibration $(20-\Omega, 30-\Omega, 40-\Omega, 60-\Omega, and 120-\Omega \text{ setting})$	V _{CCIO} = 1.5, 1.35, 1.25	-10 to +40	-10 to +40	-10 to +40	%	
60- Ω and 120- Ω R _T	Internal parallel termination with calibration $(60-\Omega)$ and $(60-\Omega)$ setting)	V _{CCIO} = 1.2	-10 to +40	-10 to +40	-10 to +40	%	
25-Ω R _{S_left_shift}	Internal left shift series termination with calibration (25- Ω R _{S_left_shift} setting)	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	±15	±15	±15	%	

Note to Table 2-8:

Calibration accuracy for the calibrated on-chip series termination (R_S OCT) and on-chip parallel termination (R_T OCT) are applicable at the moment of calibration. When process, voltage, and temperature (PVT) conditions change after calibration, the tolerance may change.

⁽¹⁾ OCT calibration accuracy is valid at the time of calibration only.

Table 2–9 lists the Arria V OCT without calibration resistance tolerance to PVT changes.

Table 2-9. OCT Without Calibration Resistance Tolerance Specifications for Arria V Devices—Preliminary

Cumbal	Description	Conditions (II)	Resis	11:4		
Symbol	Description	Conditions (V)	C4	C5, I5	C6	Unit
25-Ω R _S	Internal series termination without calibration (25- Ω setting)	V _{CCIO} = 3.0 and 2.5	±30	±40	±40	%
25-Ω R _S	Internal series termination without calibration (25- Ω setting)	V _{CCIO} = 1.8 and 1.5	±30	±40	±40	%
25-Ω R _S	Internal series termination without calibration (25- Ω setting)	V _{CCI0} = 1.2	±35	±50	±50	%
50-Ω R _S	Internal series termination without calibration (50- Ω setting)	V _{CCIO} = 3.0 and 2.5	±30	±40	±40	%
50-Ω R _S	Internal series termination without calibration (50- Ω setting)	V _{CCIO} = 1.8 and 1.5	±30	±40	±40	%
50-Ω R _S	Internal series termination without calibration (50- Ω setting)	V _{CCIO} = 1.2	±35	±50	±50	%
100-Ω R _D	Internal differential termination (100-Ω setting)	V _{CCIO} = 2.5	±25	TBD	TBD	%

OCT calibration is automatically performed at power up for OCT-enabled I/Os. Table 2–10 lists OCT variation with temperature and voltage after power-up calibration. Use Table 2–10 to determine the OCT variation after power-up calibration and Equation 2–1 to determine the OCT variation without recalibration.

Equation 2-1. OCT Variation Without Recalibration—Preliminary (1), (2), (3), (4), (5), (6)

$$R_{OCT} = R_{SCAL} \bigg(1 + \langle \frac{dR}{dT} \times \Delta T \rangle \pm \langle \frac{dR}{dV} \times \Delta V \rangle \bigg)$$

Notes to Equation 2-1:

- (1) The R_{OCT} value calculated from Equation 2–1 shows the range of OCT resistance with the variation of temperature and V_{CCIO} .
- (2) R_{SCAL} is the OCT resistance value at power-up.
- (3) ΔT is the variation of temperature with respect to the temperature at power up.
- (4) ΔV is the variation of voltage with respect to the V_{CCIO} at power up.
- (5) dR/dT is the percentage change of R_{SCAL} with temperature.
- (6) dR/dV is the percentage change of R_{SCAL} with voltage.

Table 2–10 lists the OCT variation after the power-up calibration.

Table 2–10. OCT Variation after Power-Up Calibration for Arria V Devices—*Preliminary* (1)

Symbol	Description	V _{CCIO} (V)	Value	Unit	
		3.0	0.0297		
	00-	2.5	0.0344		
dR/dV	OCT variation of voltage without recalibration	1.8	0.0499	%/mV	
	roduistation	1.5	0.0744		
		1.2	0.1241		
dR/dT		3.0	0.189		
	00-	2.5	0.208		
	OCT variation of temperature without recalibration	1.8	0.266	%/°C	
	- Todaiisi alion	1.5	0.273		
		1.2	0.317		

Note to Table 2-10:

(1) Valid for a V_{CCIO} range of $\pm 5\%$ and temperature range of 0° to 85°C.

Pin Capacitance

Table 2–11 lists the Arria V pin capacitance.

Table 2–11. Pin Capacitance for Arria V Devices

Symbol	Description	Value	Unit
C _{IOTB}	Input capacitance on top/bottom I/O pins	5.5	pF
C _{IOLR}	Input capacitance on left/right I/O pins	5.5	pF
C _{OUTFB}	Input capacitance on dual-purpose clock output/feedback pins	5.5	pF

Hot Socketing

Table 2–12 lists the hot socketing specifications for Arria V devices.

Table 2–12. Hot Socketing Specifications for Arria V Devices—Preliminary

Symbol	Description	Maximum
I _{IOPIN (DC)}	DC current per I/O pin	300 μΑ
I _{IOPIN (AC)}	AC current per I/O pin	8 mA ⁽¹⁾
I _{XCVR-TX (DC)}	DC current per transceiver transmitter (TX) pin	100 mA
I _{XCVR-RX (DC)}	DC current per transceiver receiver (RX) pin	50 mA

Note to Table 2-12:

(1) The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns, $|I_{IOPIN}| = C dv/dt$, in which C is the I/O pin capacitance and dv/dt is the slew rate.

Internal Weak Pull-Up Resistor

Table 2–13 lists the weak pull-up resistor values for Arria V devices.

Table 2–13. Internal Weak Pull-Up Resistor Values for Arria V Devices—*Preliminary* (1), (2)

Symbol	Description	Conditions (V) ⁽³⁾	Value ⁽⁴⁾	Unit
		$V_{CCIO} = 3.3 \pm 5\%$	25	kΩ
		V _{CCIO} = 3.0 ±5%	25	kΩ
		V _{CCIO} = 2.5 ±5%	25	kΩ
D	Value of the I/O pin pull-up resistor before and during configuration, as well as user mode if you have enabled the	V _{CCIO} = 1.8 ±5%	25	kΩ
1 0	programmable pull-up resistor option.	V _{CCIO} = 1.5 ±5%	25	kΩ
		V _{CCIO} = 1.35 ±5%	25	kΩ
		V _{CCIO} = 1.25 ±5%	25	kΩ
		V _{CCIO} = 1.2 ±5%	25	kΩ

Notes to Table 2-13:

- (1) All I/O pins have an option to enable weak pull-up except the configuration, test, and JTAG pins.
- (2) The internal weak pull-down feature is only available for the JTAG TCK pin. The typical value for this internal weak pull-down resistor is approximately 25 k Ω .
- (3) Pin pull-up resistance values may be lower if an external source drives the pin higher than V_{CCIO} .
- (4) Valid with ±10% tolerances to cover changes over PVT.

I/O Standard Specifications

Table 2–14 through Table 2–19 list the input voltage (V_{IH} and V_{IL}), output voltage (V_{OH} and V_{OL}), and current drive characteristics (I_{OH} and I_{OL}) for various I/O standards supported by Arria V devices. The I/O standards tables also list the Arria V device family I/O standard specifications. The V_{OL} and V_{OH} values are valid at the corresponding I_{OH} and I_{OL} , respectively.

For an explanation of terms used in Table 2–14 through Table 2–19, refer to "Glossary" on page 2–47.

Table 2-14. Single-Ended I/O Standards for Arria V Devices—Preliminary (Part 1 of 2)

	V _{CCIO} (V))		V _{IL} (V)	V _{IH} (\	/ \	V _{OL} (V)	V _{OH} (V)	_	Lau	
I/O Standard		- 6610 (- 7	<i>,</i>	-11.(-7		-16(-7		*UL (*/	*UH (*/	, I _{OL}	I _{OH}
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Min	Тур	Max	Min	Max	Min	Max	Max	Min	(mA)	(mA)
3.3-V LVTTL	3.135	3.3	3.465	-0.3	0.8	1.7	3.6	0.45	2.4	4	-4
3.3-V LVCMOS	3.135	3.3	3.465	-0.3	0.8	1.7	3.6	0.2	V _{CCIO} - 0.2	2	-2
3.0-V LVTTL	2.85	3	3.15	-0.3	0.8	1.7	3.6	0.4	2.4	2	-2
3.0-V LVCMOS	2.85	3	3.15	-0.3	0.8	1.7	3.6	0.2	V _{CCIO} - 0.2	0.1	-0.1
3.0-V PCI	2.85	3	3.15	_	0.3 x V _{CCIO}	0.5 x V _{CCIO}	V _{CCIO} + 0.3	0.1 x V _{CCIO}	0.9 x V _{CCIO}	1.5	-0.5
3.0-V PCI-X	2.85	3	3.15	_	0.35 x V _{CCIO}	0.5 x V _{CCIO}	V _{CCIO} + 0.3	0.1 x V _{CCIO}	0.9 x V _{CCIO}	1.5	-0.5
2.5 V	2.375	2.5	2.625	-0.3	0.7	1.7	3.6	0.4	2	1	-1
1.8 V	1.71	1.8	1.89	-0.3	0.35 x V _{CCIO}	0.65 x V _{CCIO}	V _{CCIO} + 0.3	0.45	V _{CCIO} - 0.45	2	-2

Table 2–14. Single-Ended I/O Standards for Arria V Devices—*Preliminary* (Part 2 of 2)

I/O Standard	I/O Standard)	V _{IL} (V)		V _{IH} (V)		V _{OL} (V) V _{OH} (V)		I _{OL}	I _{OH}
i/O Stailualu	Min	Тур	Max	Min	Max	Min	Max	Max	Min	(mA)	(mA)
1.5 V	1.425	1.5	1.575	-0.3	0.35 x V _{CCIO}	0.65 x V _{CCIO}	V _{CCIO} + 0.3	0.25 x V _{CCIO}	0.75 x V _{CCIO}	2	-2
1.2 V	1.14	1.2	1.26	-0.3	0.35 x V _{CCIO}	0.65 x V _{CCIO}	V _{CCIO} + 0.3	0.25 x V _{CCIO}	0.75 x V _{CCIO}	2	-2

Table 2–15. Single-Ended SSTL and HSTL I/O Reference Voltage Specifications for Arria V Devices—Preliminary

I/O Ctondord		V _{CCIO} (V)			V _{REF} (V)		V _{TT} (V)			
I/O Standard	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
SSTL-2 Class I, II	2.375	2.5	2.625	0.49 x V _{CCIO}	0.5 x V _{CCIO}	0.51 x V _{CCIO}	V _{REF} – 0.04	V_{REF}	V _{REF} + 0.04	
SSTL-18 Class I, II	1.71	1.8	1.89	0.833	0.9	0.969	V _{REF} – 0.04	V_{REF}	V _{REF} + 0.04	
SSTL-15 Class I, II	1.425	1.5	1.575	0.49 x V _{CCIO}	0.5 x V _{CCIO}	0.51 x V _{CCIO}	0.49 x V _{CCIO}	0.5 x V _{CCIO}	0.51 x V _{CCIO}	
SSTL 135 Class I, II	1.283	1.35	1.418	0.49 x V _{CCIO}	0.5 x V _{CCIO}	0.51 x V _{CCIO}	0.49 x V _{CCIO}	0.5 x V _{CCIO}	0.51 x V _{CCIO}	
SSTL 125 Class I, II	1.19	1.25	1.26	0.49 x V _{CCIO}	0.5 x V _{CCIO}	0.51 x V _{CCIO}	0.49 x V _{CCIO}	0.5 x V _{CCIO}	0.51 x V _{CCIO}	
HSTL-18 Class I, II	1.71	1.8	1.89	0.85	0.9	0.95	_	V _{CCIO} /2	_	
HSTL-15 Class I, II	1.425	1.5	1.575	0.68	0.75	0.9	_	V _{CCIO} /2	_	
HSTL-12 Class I, II	1.14	1.2	1.26	0.47 x V _{CCIO}	0.5 x V _{CCIO}	0.53 x V _{CCIO}	_	V _{CCIO} /2	_	
HSUL-12	1.14	1.2	1.3	0.49 x V _{CCIO}	0.5 x V _{CCIO}	0.51 x V _{CCIO}	_		_	

Table 2–16. Single-Ended SSTL and HSTL I/O Standards Signal Specifications for Arria V Devices—*Preliminary* (Part 1 of 2)

I/O Standard	V _{IL(DC}	; ₎ (V)	V _{IH(DC)} (V)		V _{IL(AC)} (V)	V _{IH(AC)} (V)	V _{OL} (V)	V _{OH} (V)	I (mA)	I (m/\)
i/U Stailualu	Min	Max	Min Max		Max	Min	Max	Min	I _{ol} (mA)	I _{oh} (mA)
SSTL-2 Class I	-0.3	V _{REF} -0.15	V _{REF} + 0.15	V _{CCIO} + 0.3	V _{REF} – 0.31	V _{REF} + 0.31	V _{TT} – 0.608	V _{TT} + 0.608	8.1	-8.1
SSTL-2 Class II	-0.3	V _{REF} -0.15	V _{REF} + 0.15	V _{CCIO} + 0.3	V _{REF} – 0.31	V _{REF} + 0.31	V _{TT} – 0.81	V _{TT} + 0.81	16.2	-16.2
SSTL-18 Class I	-0.3	V _{REF} -0.125	V _{REF} + 0.125	V _{CCIO} + 0.3	V _{REF} – 0.25	V _{REF} + 0.25	V _{TT} – 0.603	V _{TT} + 0.603	6.7	-6.7
SSTL-18 Class II	-0.3	V _{REF} -0.125	V _{REF} + 0.125	V _{CCIO} + 0.3	V _{REF} – 0.25	V _{REF} + 0.25	0.28	V _{CCIO} -0.28	13.4	-13.4
SSTL-15 Class I	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} – 0.175	V _{REF} + 0.175	0.2 x V _{CCIO}	0.8 x V _{CCIO}	8	-8
SSTL-15 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} – 0.175	V _{REF} + 0.175	0.2 x V _{CCIO}	0.8 x V _{CCIO}	16	-16

Table 2–16. Single-Ended SSTL and HSTL I/O Standards Signal Specifications for Arria V Devices—*Preliminary* (Part 2 of 2)

I/O Standard	V _{IL(DC}	; ₎ (V)	V _{IH(D(}	;) (V)	V _{IL(AC)} (V)	V _{IH(AC)} (V)	V _{OL} (V)	V _{OH} (V)	I (mA)	I _{oh} (mA)	
I/O Stanuaru	Min	Max	Max Min N		Max	Min	Max	Min	I _{ol} (mA)	ion (iiiA)	
SSTL 135	_	V _{REF} – 0.09	V _{REF} + 0.09	_	V _{REF} – 0.16	V _{REF} + 0.16	TBD (1)	TBD ⁽¹⁾	TBD (1)	TBD (1)	
SSTL 125	_	V _{REF} – 0.85	V _{REF} + 0.85	_	V _{REF} – 0.15	V _{REF} + 0.15	TBD ⁽¹⁾	TBD (1)	TBD ⁽¹⁾	TBD ⁽¹⁾	
HSTL-18 Class I	_	V _{REF} -0.1	V _{REF} + 0.1	_	V _{REF} – 0.2	V _{REF} + 0.2	0.4	V _{CCIO} - 0.4	8	-8	
HSTL-18 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} – 0.2	V _{REF} + 0.2	0.4	V _{CCIO} - 0.4	16	-16	
HSTL-15 Class I	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} – 0.2	V _{REF} + 0.2	0.4	V _{CCIO} - 0.4	8	-8	
HSTL-15 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} – 0.2	V _{REF} + 0.2	0.4	V _{CCIO} -0.4	16	-16	
HSTL-12 Class I	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	V _{REF} – 0.15	V _{REF} + 0.15	0.25 x V _{CCIO}	0.75 x V _{CCIO}	8	-8	
HSTL-12 Class II	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	V _{REF} – 0.15	V _{REF} + 0.15	0.25 x V _{CCIO}	0.75 x V _{CCIO}	16	-16	
HSUL-12	_	V _{REF} – 0.13	V _{REF} + 0.13	_	V _{REF} – 0.22	V _{REF} + 0.22	0.1 x V _{CCIO}	0.9 x V _{CCIO}	TBD (1)	TBD (1)	

Note to Table 2-16:

Table 2–17. Differential SSTL I/O Standards for Arria V Devices—*Preliminary*

1/0				V _{SWING(DC)} (V)			V _{X(AC)} (V)		V _{SWING(AC)} (V)		V _{OX(AC)} (V)		
Standard	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Max	Min	Тур	Max
SSTL-2 Class I, II	2.375	2.5	2.625	0.3	V _{CCIO} + 0.6	V _{CCIO} /2 - 0.2	_	V _{CCIO} /2 + 0.2	0.62	V _{CCIO} + 0.6	V _{CCIO} /2 – 0.15	_	V _{CCIO} /2 + 0.15
SSTL-18 Class I, II	1.71	1.8	1.89	0.25	V _{CCIO} + 0.6	V _{CCIO} /2 - 0.175	_	V _{CCIO} /2 + 0.175	0.5	V _{CCIO} + 0.6	V _{CCIO} /2 – 0.125	_	V _{CCIO} /2 + 0.125
SSTL-15 Class I, II	1.425	1.5	1.575	0.2	-0.2	-0.15	_	0.15	-0.35	0.35	_	V _{CCIO} /2	_
SSTL 135	1.283	1.35	1.45	0.2	-0.2	V _{REF} - 0.135	V _{CCIO} /2	V _{REF} + 0.135	TBD (1)	TBD (1)	V _{REF} -0.15	_	V _{REF} + 0.15
SSTL 125	1.19	1.25	1.31	TBD (1)	_	TBD (1)	V _{CCIO} /2	TBD (1)	TBD (1)	_	TBD (1)	TBD (1)	TBD (1)

Note to Table 2-17:

⁽¹⁾ Pending silicon characterization.

⁽¹⁾ Pending silicon characterization.

	Table 2-18.	Differential HSTL	. I/O Standards for	Arria V Devices-	-Preliminary
--	-------------	-------------------	---------------------	------------------	--------------

I/O	,	V _{CCIO} (V)			_{DC)} (V)	V _{X(AC)} (V)			V _{CM(DC)} (V)			V _{DIF(AC)} (V)	
Standard	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Min	Max
HSTL-18 Class I, II	1.71	1.8	1.89	0.2		0.78	_	1.12	0.78	_	1.12	0.4	_
HSTL-15 Class I, II	1.425	1.5	1.575	0.2		0.68	_	0.9	0.68	_	0.9	0.4	_
HSTL-12 Class I, II	1.14	1.2	1.26	0.16	V _{CCIO} + 0.3	_	0.5 x V _{CCIO}	_	0.4 x V	0.5 x V	0.6 x V _{CCIO}	0.3	V _{CCIO} + 0.48
HSUL-12	1.14	1.2	1.3	0.26	0.26	0.5 x V _{CCIO} - 0.12	0.5 x V _{CCIO}	0.5 x V _{CCIO} +0.12	0.4 x V	0.5 x V	0.6 x V _{CCIO}	0.44	0.44

Table 2–19. Differential I/O Standard Specifications for Arria V Devices—*Preliminary* (1)

I/O Standard	V	/ _{ccio} (\	()		V _{ID} (mV)		V _{ICM(DC)} (V)		V _{OD} (V) ⁽²⁾			V _{OCM} (V) ⁽²⁾		
I/O Stanuaru	Min	Тур	Max	Min	Condition	Max	Min	Max	Min	Тур	Max	Min	Тур	Max
PCML							(3)							
2.5 V LVDS	2.375	2.5	2.625	100	V _{CM} =	_	0.05	1.8	0.247		0.6	1.125	1.25	1.375
2.3 V LVD3	2.373	2.5	2.025	100	1.25 V	_	1.05	1.55	0.247	_	0.6	1.125	1.25	1.375
RSDS (HIO)	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.3	1.4	0.1	0.2	0.6	0.5	1.2	1.4
Mini-LVDS (HIO)	2.375	2.5	2.625	200	_	600	0.4	1.325	0.25	_	0.6	1	1.2	1.4
LVPECL	2.375	2.5	2.625	300	_	_	0.6	1.8	_		_	_	_	_

Notes to Table 2-19:

- (1) The 1.4-V and 1.5-V PCML transceiver I/O standard specifications are described in "Transceiver Performance Specifications" on page 2-14.
- (2) RL range: $90 \le RL \le 110 \Omega$.
- (3) Transmitter, receiver, and input reference clock pins of high-speed transceivers use the **PCML** I/O standard. For transmitter, receiver, and reference clock I/O pin specifications, refer to Table 2–20 and Table 2–21.

Power Consumption

Altera offers two ways to estimate power consumption for a design—the Excel-based Early Power Estimator (EPE) and the Quartus[®] II PowerPlay Power Analyzer feature.

You typically use the interactive Excel-based EPE before designing the FPGA to get a magnitude estimate of the device power. The Quartus II PowerPlay Power Analyzer provides better quality estimates based on the specifics of the design after you complete place-and-route. The PowerPlay Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, when combined with detailed circuit models, yields very accurate power estimates.

For more information about power estimation tools, refer to the *PowerPlay Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in the *Quartus II Handbook*.

Switching Characteristics

This section provides performance characteristics of Arria V core and periphery blocks for commercial grade devices.

These characteristics can be designated as Preliminary or Final.

- Preliminary characteristics are created using simulation results, process data, and other known parameters. The title of these tables show the designation as "Preliminary."
- Final numbers are based on actual silicon characterization and testing. The numbers reflect the actual performance of the device under worst-case silicon process, voltage, and junction temperature conditions. There are no preliminary designations on finalized tables.

Transceiver Performance Specifications

This section describes transceiver performance specifications.

Table 2–20 and Table 2–21 list the Arria V transceiver specifications.

Table 2–20. Transceiver Specifications for Arria V GX Devices—*Preliminary* (1) (Part 1 of 3)

Symbol/ Description	Conditions	–4 Commercial Speed Grade			–5 Commercial/Industrial Speed Grade			Con	Unit		
•		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Reference Clock											
Supported I/O Standards	1.2 V PCM	IL, 1.4 V	PCML, 1	I.5 V PCM	L, 2.5 V	PCML, D	ifferential	LVPECL	(2), HCSL	., and LVD	S
Input frequency from REFCLK input pins	_	27	_	710	27	_	710	27	_	710	MHz
Duty cycle	_	45	_	55	45	_	55	45	_	55	%
Peak-to-peak differential input voltage	_	200	_	2000	200	_	2000	200	_	2000	mV
Spread-spectrum modulating clock frequency	PCI Express® (PCIe®)	30	_	33	30	_	33	30	_	33	kHz
Spread-spectrum downspread	PCle	_	0 to -0.5%	_	_	0 to -0.5%	_	_	0 to -0.5%	_	_
On-chip termination resistors	_	_	100	_	_	100	_	_	100	_	Ω
V _{ICM} (AC coupled)	_		1.1 (3)			1.1 ⁽³⁾			1.1 (3)		V
V _{ICM} (DC coupled)	HCSL I/O standard for the PCIe reference clock	250	_	550	250	_	550	250	_	550	mV
R _{REF}	_	_	2000 ±1%	_	_	2000 ±1%	_	_	2000 ±1%	_	Ω

Arria V Device Handbook Volume 1: Device Overview and Datasheet

Table 2–20. Transceiver Specifications for Arria V GX Devices—*Preliminary* (1) (Part 2 of 3)

Symbol/ Description	Conditions		–4 Commerc Speed Gra			–5 nercial/In Speed Gra		Con	–6 nmercial Grade		Unit
•		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Transceiver Clocks											
fixedclk Clock frequency	PCIe Receiver Detect	_	125	_	_	125	_	_	125		MHz
Avalon®-Memory- Mapped (Avalon-MM) PHY management clock frequency					< 150						MHz
Receiver											
Supported I/O Standards			1.5	V PCML,	2.5 V PC	ML, LVP	ECL, and L	VDS			
Data rate	_	611	_	6553	611	_	6553	611	_	3125	Mbps
Absolute V _{MAX} for a receiver pin ⁽⁴⁾	_	_	_	1.2	_	_	1.2	_	_	1.2	V
Absolute V _{MIN} for a receiver pin	_	-0.4	_	_	-0.4	_	_	-0.4	_	_	V
Maximum peak-to-peak differential input voltage V _{ID} (diff p-p) before device configuration	_	_	_	1.6	_	_	1.6	_	_	1.6	V
Maximum peak-to-peak differential input voltage V _{ID} (diff p-p) after device configuration	_	_	_	2.2	_	_	2.2	_	_	2.2	V
Minimum differential eye opening at the receiver serial input pins (5)	_	85	_	_	85	_	_	85	_	_	mV
	85-Ω setting	_	85		_	85			85	_	Ω
Differential on-chip	100-Ω setting	_	100		_	100			100		Ω
termination resistors	120-Ω setting	_	120		_	120	_	_	120	_	Ω
	150-Ω setting	_	150		_	150		_	150	_	Ω
Differential and common mode return loss	PCIe (Gen1 and Gen2), GIGE, XAUI, SDI, CPRI, OBSAI					Complia	nt				_
Programmable ppm detector ⁽⁶⁾	_			±62.5, 10	00, 125, 2	200, 250,	300, 500,	and 100	0		ppm
Run Length	_	_	_	200	_	_	200		_	200	UI
Programmable equalization	_	_	_	4	_	_	4	_	_	4	dB

Table 2–20. Transceiver Specifications for Arria V GX Devices—*Preliminary* (1) (Part 3 of 3)

Symbol/ Description	Conditions	s Speed Grade S					ndustrial ade	Con	Speed	Unit	
-		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Programmable DC gain	DC Gain Setting = 0	_	0	_	_	0	_	_	0	_	dB
Frogrammable DC gam	DC Gain Setting = 1		3	_		3	_	_	3		dB
Transmitter											
Supported I/O Standards					1.5 V	PCML					
Data rate	_	611	_	6553	611	_	6553	611	_	3125	Mbps
V _{OCM}	_	_	650	_	_	650	_	_	650	_	mV
	85-Ω setting	_	85	_	_	85	_	_	85	_	Ω
Differential on-chip	100- Ω setting	_	100	_	_	100	_	_	100	_	Ω
termination resistors	120- Ω setting	_	120	_	_	120	_	_	120	_	Ω
	150-Ω setting	_	150	_	_	150	_	_	150	_	Ω
Rise time (7)	_	30	_	160	30	_	160	30	_	160	ps
Fall time (7)	_	30	_	160	30	_	160	30	_	160	ps
CMU PLL											
Supported data range	_	611	_	6553	611	_	6553	611	_	3125	Mbps
Transceiver-FPGA Fabri	c Interface										
Interface speed (single-width mode)	_	25	_	156.25	25	_	156.25	25	_	156.25	MHz
Interface speed (double-width mode)	_	25	_	159.375	25	_	159.375	25		159.375	MHz

Notes to Table 2-20:

- (1) Speed grades shown in Table 2–20 refer to the Transceiver Speed Grade in the device ordering code. For more information about device ordering codes, refer to the Overview for Arria V Device Family chapter.
- (2) Differential LVPECL signal levels must comply to the minimum and maximum peak-to-peak differential input voltage specified in this table.
- (3) The reference clock common mode voltage is equal to the $V_{\text{CCR_GXB}}$ power supply level.
- (4) The device cannot tolerate prolonged operation at this absolute maximum.
- (5) The differential eye opening specification at the receiver input pins assumes that you have disabled the **Receiver Equalization** feature. If you enable the **Receiver Equalization** feature, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level.
- (6) The rate match FIFO supports only up to ±300 parts per million (ppm).
- (7) The Quartus II software automatically selects the appropriate slew rate depending on the configured data rate or functional mode.

Table 2–21. Transceiver Specifications for Arria V GT Devices—*Preliminary* (1) (Part 1 of 2)

Symbol/ Description	Conditions		–5 Industrial Speed Grad		Unit
		Min	Тур	Max	
Reference Clock					
Supported I/O Standards	1.2 V PCML, 1.4 V PCML,		IL, 2.5 V PCM and LVDS	L, Differential	LVPECL (2)
Input frequency from REFCLK input pins	_	27	_	710	MHz
Duty cycle	_	45	_	55	%
Peak-to-peak differential input voltage	_	200	_	2000	mV
Spread-spectrum modulating clock frequency	PCI Express® (PCIe®)	30	_	33	kHz
Spread-spectrum downspread	PCle	_	0 to -0.5%	_	_
On-chip termination resistors	_	_	100	_	Ω
V _{ICM} (AC coupled)	_		1.1 (3)		V
V _{ICM} (DC coupled)	HCSL I/O standard for the PCIe reference clock	250	_	550	mV
R _{REF}	_	_	2000 ±1%	_	Ω
Transceiver Clocks					
fixedclk clock frequency	PCIe Receiver Detect	_	125	_	MHz
Avalon-MM PHY management clock frequency		< 150			MHz
Receiver					•
Supported I/O Standards	1.5 V PCN	IL, 2.5 V P	CML, LVPECL,	and LVDS	
Data rate (6-Gbps Transceiver)	_	611	_	6375	Mbps
Data rate (10-Gbps transceiver)	_	6.376	9.8304	10.3125	Gbps
Absolute V _{MAX} for a receiver pin ⁽⁴⁾	_	_	_	1.2	V
Absolute V _{MIN} for a receiver pin	_	-0.4	_	_	V
Maximum peak-to-peak differential input voltage V_{ID} (diff p-p) before device configuration	_	_	_	1.6	V
Maximum peak-to-peak differential input voltage V _{ID} (diff p-p) after device configuration	_	_	_	2.2	V
Minimum differential eye opening at the receiver serial input pins ⁽⁵⁾	_	85	_	_	mV
	85-Ω setting		85		Ω
Differential on-chip termination registers	100-Ω setting		100		Ω
Differential on-chip termination resistors	120-Ω setting		120		Ω
	150-Ω setting		150		Ω

Table 2–21. Transceiver Specifications for Arria V GT Devices—Preliminary (1) (Part 2 of 2)

Symbol/ Description	Conditions		–5 Industrial Speed Grad		Unit
		Min	Тур	Max	
Differential and common mode return loss	PCIe (Gen1 and Gen2), GIGE, XAUI, SDI, CPRI, OBSAI, SFI		Compliant	İ	_
Programmable ppm detector (6)	_	±62.5, 100	0, 125, 200, 2 and 1000	250, 300, 500,	ppm
Run Length	_	_	_	200	UI
Programmable equalization	_	_	_	4	dB
Programmable DC gain	DC Gain Setting = 0	_	0	_	dB
Trogrammable Do gam	DC Gain Setting = 1	_	3	_	dB
Transmitter					
Supported I/O Standards		1.5 \	PCML		
Data rate (6-Gbps transceiver)	_	611	_	6375	Mbps
Data rate (10-Gbps transceiver)	_	6.376	9.8304	10.3125	Gbps
V _{OCM}	_	_	650	_	mV
	85- Ω setting	_	85	_	Ω
Differential on-chip termination resistors	100-Ω setting	_	100	_	Ω
Differential off-chilp termination resistors	120-Ω setting	_	120	_	Ω
	150- Ω setting	_	150	_	Ω
Rise time (7)	_	30	_	160	ps
Fall time (7)	_	30	_	160	ps
CMU PLL					
Supported data range	_	0.611	_	10.3125	Gbps
Transceiver-FPGA Fabric Interface					
Interface speed (80-bit mode)	_	25	_	159.375	MHz
Interface speed (single-width mode)	_	25	_	156.25	MHz
Interface speed (double-width mode)	_	25	_	159.375	MHz

Notes to Table 2-21:

- (1) Speed grades shown in Table 2–21 refer to the Transceiver Speed Grade in the device ordering code. For more information about device ordering codes, refer to the *Overview for Arria V Device Family* chapter.
- (2) Differential LVPECL signal levels must comply to the minimum and maximum peak-to-peak differential input voltage specified in this table.
- (3) The reference clock common mode voltage is equal to the $V_{\text{CCR_GXB}}$ power supply level.
- (4) The device cannot tolerate prolonged operation at this absolute maximum.
- (5) The differential eye opening specification at the receiver input pins assumes that you have disabled the **Receiver Equalization** feature. If you enable the **Receiver Equalization** feature, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level.
- (6) The rate match FIFO supports only up to ±300 ppm.
- (7) The Quartus II software automatically selects the appropriate slew rate depending on the configured data rate or functional mode.

Table 2–22 and Table 2–23 list the transceiver block jitter specification for Arria V devices.

Table 2–22. Transceiver Block Jitter Specification for Arria V GX Devices—*Preliminary* (Part 1 of 4)

Symbol/ Description	Conditions	Comr	–4 nercial S Grade	Speed		–5 ommerci ıstrial S _l Grade		Comr	–6 Commercial Speed Grade		Unit
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
CPRI Transmit Ji	itter Generation ⁽¹⁾										
	E.6.HV, E.12.HV Pattern = CJPAT	_	_	0.279	_	_	0.279	_	_	0.279	UI
Total Jitter	E.6.LV, E.12.LV, E.24.LV, E.30.LV	_	_	0.35	_	_	0.35	_	_	0.35	UI
	Pattern = CJTPAT										
Determeinistis	E.6.HV, E.12.HV Pattern = CJPAT	_	_	0.14	_	_	0.14	_	_	0.14	UI
Deterministic Jitter	E.6.LV, E.12.LV, E.24.LV, E.30.LV	_	_	0.17	_	_	0.17	_	_	0.17	UI
	Pattern = CJTPAT										
CPRI Receiver J	itter Tolerance ⁽¹⁾										
Total jitter	E.6.HV, E.12.HV		> 0.66			> 0.66			> 0.66		UI
tolerance	Pattern = CJPAT		> 0.00			> 0.00			> 0.00		UI
Deterministic jitter tolerance	E.6.HV, E.12.HV Pattern = CJPAT		> 0.4			> 0.4			> 0.4		UI
Total jitter tolerance	E.6.LV, E.12.LV, E.24.LV, E.30.LV		> 0.65			> 0.65			> 0.65		UI
toloranoo	Pattern = CJTPAT										
Deterministic jitter tolerance	E.6.LV, E.12.LV, E.24.LV, E.30.LV Pattern = CJTPAT		> 0.37			> 0.37			> 0.37		UI
Combined deterministic and random	E.6.LV, E.12.LV, E.24.LV, E.30.LV		> 0.55			> 0.55			> 0.55		UI
jitter tolerance	Pattern = CJTPAT										
OBSAI Transmit	Jitter Generation ⁽²⁾	•									
Total jitter at 768 Mbps, 1536 Mbps, and 3072 Mbps	REFCLK = 153.6 MHz Pattern = CJPAT	_	_	0.35	_	_	0.35	_	_	0.35	UI
Deterministic jitter at 768 Mbps, 1536 Mbps, and 3072 Mbps	REFCLK = 153.6 MHz Pattern = CJPAT	_	_	0.17	_	_	0.17	—	_	0.17	UI

Table 2–22. Transceiver Block Jitter Specification for Arria V GX Devices—*Preliminary* (Part 2 of 4)

Conditions	Comn	–4 nercial S Grade	Speed		–5 ommerci ostrial S _l Grade		-6 Commercial Grade		rcial Speed	
	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
er Tolerance ⁽²⁾										
attern = CJPAT		> 0.37			> 0.37			> 0.37		UI
attern = CJPAT		> 0.55		> 0.55 > 8.5				> 0.55		UI
tter Frequency = 4 KHz	> 8.5 > 8.5 > 8.5				> 8.5			UI		
attern = CJPAT										
60 MHz to 20 MHz		> 0.1 > 0.1		> 0.1			> 0.1		UI	
D.9 KHz		> 8.5			> 8.5			> 8.5		UI
attern = CJPAT										
tter Frequency = 21.6 MHz to 20 MHz		> 0.1			> 0.1			> 0.1		UI
attern = CJPAT										
tter Frequency = 1.8 KHz		> 8.5			> 8.5			> 8.5		UI
attern = CJPAI tter Frequency = 843.2 MHz to 20 MHz attern = CJPAT		> 0.1			> 0.1			> 0.1		UI
IO) Transmit Jitter Gene	eration ((3)								•
ata Rate = 1.25, 2.5, 125 Gbps	_	_	0.17	_	_	0.17	_	_	0.17	UI
125 Gbps	_	_	0.35	_	_	0.35	_	_	0.35	UI
a transfer	er Tolerance (2) attern = CJPAT etter Frequency = 4 KHz etter Frequency = 50 MHz to 20 MHz etter Frequency = 0.9 KHz etter Frequency = 0.9 KHz etter Frequency = 21.6 MHz to 20 MHz etter Frequency = 21.6 MHz to 20 MHz etter Frequency = 1.8 KHz ettern = CJPAT etter Frequency = 1.25, 2.5, 1.25 Gbps ettern = CJPAT etter Frequency = 1.25, 2.5, 1.25 Gbps ettern = CJPAT etter Frequency = 1.25, 2.5, 1.25 Gbps ettern = CJPAT	conditions er Tolerance (2) attern = CJPAT attern = CJPAT tter Frequency = 4 KHz attern = CJPAT tter Frequency = 50 MHz to 20 MHz attern = CJPAT tter Frequency = 21.6 MHz to 20 MHz attern = CJPAT tter Frequency = 21.6 MHz to 20 MHz attern = CJPAT tter Frequency = 1.8 KHz attern = CJPAT tter Frequency = 243.2 MHz to 20 MHz attern = CJPAT tter Frequency = 343.2 MHz to 20 MHz attern = CJPAT tter Frequency = 343.2 MHz to 20 MHz attern = CJPAT tter Frequency = 343.2 MHz to 20 MHz attern = CJPAT Conditions Frade Min Typ Attern = CJPAT At	Min Typ Max	Min Typ Max Min	Min Typ Max Min Typ Max Min Typ	Conditions Grade Min Typ Max Min Typ Max	Min Typ Max Min Typ Max Min Min	Min Typ Max Min Typ Max Min Typ Max Min Typ	Min Typ Max Min Typ Min Min Top Min Min Top	

Table 2–22. Transceiver Block Jitter Specification for Arria V GX Devices—*Preliminary* (Part 3 of 4)

Symbol/ Description	Conditions	Comr	–4 nercial S Grade	Speed		–5 ommerci istrial S _l Grade		Comr	–6 nercial Grade	Speed	Unit	
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max		
SRIO Receiver Ji	tter Tolerance ⁽³⁾											
Deterministic jitter tolerance (peak-to-peak)	Data Rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 0.37			> 0.37			> 0.37		UI	
Combined deterministic and random jitter tolerance (peak-to-peak)	Data Rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 0.55			> 0.55			> 0.55		UI	
	Jitter Frequency = 22.1 KHz Data Rate = 1.25, 2.5, 3.125 Gbps		> 8.5		> 8.5				> 8.5			
	Pattern = CJPAT											
	Jitter Frequency = 1.875 MHz											
Sinusoidal jitter tolerance (peak-to-peak)	Data Rate = 1.25, 2.5, 3.125 Gbps		> 0.1		> 0.1				> 0.1		UI	
(peak to peak)	Pattern = CJPAT											
	Jitter Frequency = 20 MHz											
	Data Rate = 1.25, 2.5, 3.125 Gbps		> 0.1			> 0.1		> 0.1			UI	
	Pattern = CJPAT											
GIGE Transmit Ji	tter Generation ⁽⁴⁾											
Deterministic jitter (peak-to-peak)	Pattern = CRPAT	_	_	0.14	_	_	0.14	_	_	0.14	UI	
Total jitter (peak-to-peak)	Pattern = CRPAT	_	_	0.279		—	0.279	_	_	0.279	UI	
GIGE Receiver Ji	itter Tolerance ⁽⁴⁾	<u> </u>										
Deterministic jitter tolerance (peak-to-peak)	Pattern = CJPAT	> 0.4		> 0.4			> 0.4			UI		
Combined deterministic and random jitter tolerance (peak-to-peak)	Pattern = CJPAT	> 0.66 > 0.66			UI							

Arria V Device Handbook Volume 1: Device Overview and Datasheet

Table 2–22. Transceiver Block Jitter Specification for Arria V GX Devices—Preliminary (Part 4 of 4)

Symbol/ Description	Conditions	Comr	-4 nercial (Grade	Speed		–5 ommerci: istrial Sp Grade		-6 Commercial Speed Grade			Unit
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
HiGig Transmit J	litter Generation ⁽⁵⁾										
Deterministic jitter (peak-to-peak)	Data Rate = 3.75 Gbps Pattern = CJPAT	_	_	0.17	_	_	_	_	_	_	UI
Total jitter (peak-to-peak)	Data Rate = 3.75 Gbps Pattern = CJPAT	_	_	0.35	_	_	_	_	_	_	UI

Notes to Table 2-22:

- (1) The jitter numbers for CPRI are compliant to the CPRI Specification V3.0.
- (2) The jitter numbers for OBSAI are compliant to the OBSAI RP3 Specification V4.1.
- (3) The jitter numbers for SRIO are compliant to the RapidIO Specification 1.3.
- (4) The jitter numbers for GIGE are compliant to the IEEE802.3-2002 Specification.
- (5) The jitter numbers for HiGig are compliant to the IEEE802.3ae-2002 Specification.

Table 2–23. Transceiver Block Jitter Specification for Arria V GT Devices—Preliminary (Part 1 of 4)

Symbol/ Description	Conditions	Indu	–5 strial Speed (Grade	Unit
Description		Min	Тур	Max	
SFI Transmit Jitter Gener	ation ⁽¹⁾				
Deterministic Jitter	Data Rate = 9.8304, 10.3125 Gbps	_	_	0.1	UI
Total Jitter	Pattern = PRBS31	_	_	0.28	UI
SFI Receive Jitter Tolera	nce ⁽¹⁾				
99% Jitter Tolerance	Data Rate = 9.8304, 10.3125 Gbps		>0.42		UI
Total Jitter	Pattern = PRBS31		>0.70		UI
CPRI Transmit Jitter Gen	eration ⁽²⁾				
	E.6.HV, E.12.HV			0.279	
Total Jitter	Pattern = CJPAT	_	_	0.279	_
TOTAL SILLER	E.6.LV, E.12.LV, E.24.LV, E.30.LV			0.35	
	Pattern = CJTPAT	_	_	0.55	_
	E.6.HV, E.12.HV			0.14	
Deterministic Jitter	Pattern = CJPAT	_	_	0.14	_
Deterministic airrei	E.6.LV, E.12.LV, E.24.LV, E.30.LV			0.17	
	Pattern = CJTPAT			0.17	

Arria V Device Handbook Volume 1: Device Overview and Datasheet

Table 2–23. Transceiver Block Jitter Specification for Arria V GT Devices—*Preliminary* (Part 2 of 4)

Symbol/	Conditions	Indus	–5 strial Speed (Grade	Unit
Description		Min	Тур	Max	
CPRI Receive Jitter Genera	tion ⁽²⁾				
Total iittar talaranaa	E.6.HV, E.12.HV		. 0.00		0.00
Total jitter tolerance	Pattern = CJPAT		> 0.66		> 0.66
Deterministic jitter	E.6.HV, E.12.HV		> 0.4		> 0.4
tolerance	Pattern = CJPAT		> 0.4		> 0.4
Total jittar talaranga	E.6.LV, E.12.LV, E.24.LV, E.30.LV		> 0.65		> 0.65
Total jitter tolerance	Pattern = CJTPAT		> 0.00		> 0.00
Deterministic jitter	E.6.LV, E.12.LV, E.24.LV, E.30.LV		> 0.37		> 0.37
tolerance	Pattern = CJTPAT		> 0.37		> 0.37
Combined deterministic	E.6.LV, E.12.LV, E.24.LV, E.30.LV		> 0.55		> 0.55
and random jitter tolerance	Pattern = CJTPAT		> 0.55		> 0.55
OBSAI Transmit Jitter Gene	ration ⁽³⁾				
Total jitter at 768 Mbps,	REFCLK = 153.6MHz				
1536 Mbps, and 3072 Mbps	Pattern = CJPAT	_	_	0.35	_
Deterministic jitter at	REFCLK = 153.6MHz			0.47	
768 Mbps, 1536 Mbps, and 3072 Mbps	Pattern = CJPAT	_	_	0.17	
OBSAI Receiver Jitter Toler	ance ⁽³⁾				<u>.</u>
Deterministic jitter tolerance at 768 Mbps, 1536 Mbps, and 3072 Mbps	Pattern = CJPAT		> 0.37		> 0.37
Combined deterministic and random jitter tolerance at 768 Mbps, 1536 Mbps, and 3072 Mbps	Pattern = CJPAT		> 0.55		> 0.55
	Jitter Frequency = 5.4 KHz		> 8.5		> 8.5
Sinusoidal Jitter tolerance	Pattern = CJPAT		7 0.0		× 0.0
at 768 Mbps	Jitter Frequency = 460 MHz to 20 MHz		> 0.1		> 0.1
	Pattern = CJPAT		, 3		. 0.1
	Jitter Frequency = 10.9 KHz		> 8.5		> 8.5
Sinusoidal Jitter tolerance	Pattern = CJPAT		. 3.0		. 5.5
at 1536 Mbps	Jitter Frequency = 921.6 MHz to 20 MHz		> 0.1		> 0.1
	Pattern = CJPAT				

Table 2–23. Transceiver Block Jitter Specification for Arria V GT Devices—*Preliminary* (Part 3 of 4)

Symbol/	Conditions	Indus	Unit		
Description		Min	Тур	Max	0
	Jitter Frequency = 21.8 KHz	. 0 5			. 0 5
Sinusoidal Jitter tolerance	Pattern = CJPAT		> 8.5		> 8.5
at 3072 Mbps	Jitter Frequency = 1843.2 MHz to 20 MHz	> 0.1			> 0.1
	Pattern = CJPAT				
SRIO Transmit Jitter Genera	ntion ⁽⁴⁾				
Deterministic jitter	Data Rate = 1.25, 2.5, 3.125 Gbps			0.47	
(peak-to-peak)	Pattern = CJPAT	_	_	0.17	UI
Tatal Stan (mask to mask)	Data Rate = 1.25, 2.5, 3.125 Gbps			0.05	
Total jitter (peak-to-peak)	Pattern = CJPAT	0.35		0.35	UI
SRIO Receiver Jitter Tolera	nce ⁽⁴⁾				
Deterministic jitter	Data Rate = 1.25, 2.5, 3.125 Gbps	> 0.37			UI
tolerance (peak-to-peak)	Pattern = CJPAT	<i>></i> 0.31			UI
Combined deterministic	Data Rate = 1.25, 2.5, 3.125 Gbps		0.55		
and random jitter tolerance (peak-to-peak)	Pattern = CJPAT		> 0.55		UI
((1-10-1)	Jitter Frequency = 22.1 KHz Data Rate = 1.25, 2.5, 3.125 Gbps	> 8.5			UI
	Pattern = CJPAT	. 5.5			٥.
	Jitter Frequency = 1.875 MHz				
Sinusoidal jitter tolerance	Data Rate = 1.25, 2.5, 3.125 Gbps		> 0.1		UI
(peak-to-peak)	Pattern = CJPAT				
	Jitter Frequency = 20 MHz				
	Data Rate = 1.25, 2.5, 3.125 Gbps		> 0.1		UI
	Pattern = CJPAT				
GIGE Transmit Jitter Genera	ntion ⁽⁵⁾				
Deterministic jitter (peak-to-peak)	Pattern = CRPAT	_	_	0.14	UI
Total jitter (peak-to-peak)	Pattern = CRPAT	_	_	0.279	UI
GIGE Receiver Jitter Tolera	nce ⁽⁵⁾				
Deterministic jitter tolerance (peak-to-peak)	Pattern = CJPAT		> 0.4		UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Pattern = CJPAT	> 0.66			UI

Table 2–23. Transceiver Block Jitter Specification for Arria V GT Devices—Preliminary (Part 4 of 4)

Symbol/	Conditions	Indus	Unit				
Description		Min	Тур	Max			
HiGig Transmit Jitter Generation ⁽⁶⁾							
Deterministic jitter (peak-to-peak)	Data Rate = 3.75 Gbps Pattern = CJPAT	_	_	0.17	UI		
Total jitter (peak-to-peak)	Data Rate = 3.75 Gbps Pattern = CJPAT	_	_	0.35	UI		

Notes to Table 2-23:

- (1) The jitter numbers for SFI are compliant to SFF-8431 Specification.
- (2) The jitter numbers for CPRI are compliant to the CPRI Specification V3.0.
- (3) The jitter numbers for OBSAI are compliant to the OBSAI RP3 Specification V4.1.
- (4) The jitter numbers for SRIO are compliant to the RapidIO Specification 1.3.
- (5) The jitter numbers for GIGE are compliant to the IEEE802.3-2002 Specification.
- (6) The jitter numbers for HiGig are compliant to the IEEE802.3ae-2002 Specification.

Core Performance Specifications

This section describes the clock tree, phase-locked loop (PLL), digital signal processing (DSP), memory blocks and temperature sensing diode specifications.

Clock Tree Specifications

Table 2–24 lists the clock tree specifications for Arria V devices.

Table 2–24. Clock Tree Performance for Arria V Devices—Preliminary

Performance								
Symbol	-C4 Speed Grade	-C5, I5 Speed Grade	-C6 Speed Grade	Unit				
Global clock and Regional clock	625	625	525	MHz				
Peripheral clock	450	400	350	MHz				

PLL Specifications

Table 2–25 lists the Arria V PLL specifications when operating in both the commercial junction temperature range (0° to 85° C) and the industrial junction temperature range (-40° to 100° C).

Table 2–25. PLL Specifications for Arria V Devices—*Preliminary* (1) (Part 1 of 3)

Symbol	Parameter		Тур	Max	Unit
	Input clock frequency (-4 speed grade)		_	670 ⁽²⁾	MHz
f_{IN}	Input clock frequency (–5 speed grade)	5	_	622 ⁽²⁾	MHz
	Input clock frequency (–6 speed grade)	5	_	500 ⁽²⁾	MHz
f _{INPFD}	Integer input clock frequency to the PFD		_	325	MHz
f _{FINPFD}	Fractional input clock frequency to the PFD	50	_	TBD (1)	MHz

Table 2–25. PLL Specifications for Arria V Devices—*Preliminary* (1) (Part 2 of 3)

Symbol	Parameter	Min	Тур	Max	Unit
	PLL VCO operating range (-4 speed grade)	600		1600	MHz
f_{VCO}	PLL VCO operating range (-5 speed grade)	600		1400	MHz
	PLL VCO operating range (-6 speed grade)	600	_	1300	MHz
t _{EINDUTY}	Input clock or external feedback clock input duty cycle	40	_	60	%
	Output frequency for internal global or regional clock (–4 speed grade)	_	_	500 ⁽³⁾	MHz
f _{out}	Output frequency for internal global or regional clock (–5 speed grade)	_	_	500 (3)	MHz
	Output frequency for internal global or regional clock (–6 speed grade)	_	_	400 (3)	MHz
	Output frequency for external clock output (–4 speed grade)	_	_	670 ⁽³⁾	MHz
f _{OUT_EXT}	Output frequency for external clock output (–5 speed grade)	_	_	622 ⁽³⁾	MHz
	Output frequency for external clock output (–6 speed grade)	_	_	500 ⁽³⁾	MHz
t _{outduty}	Duty cycle for external clock output (when set to 50%)	45	50	55	%
t _{FCOMP}	External feedback clock compensation time	_	_	10	ns
t _{CONFIGPHASE}	Time required to reconfigure phase shift	_		TBD (1)	_
t _{DYCONFIGCLK}	Dynamic Configuration Clock	_		100	MHz
t _{LOCK}	Time required to lock from end-of-device configuration or deassertion of areset		_	1	ms
t _{DLOCK}	Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/delays)		_	1	ms
	PLL closed-loop low bandwidth	_	0.3	_	MHz
f_{CLBW}	PLL closed-loop medium bandwidth		1.5	_	MHz
	PLL closed-loop high bandwidth (B)	_	4	_	MHz
t _{PLL_PSERR}	Accuracy of PLL phase shift	_		±50	ps
t _{ARESET}	Minimum pulse width on the areset signal	10	_	_	ns
± (A) (5)	Input clock cycle-to-cycle jitter (F _{REF} ≥ 100 MHz)	_	_	0.15	UI (p-p)
t _{INCCJ} (4), (5)	Input clock cycle-to-cycle jitter (F _{REF} < 100 MHz)	_	_	+750	ps (p-p)
(6)	Period jitter for dedicated clock output (F _{OUT} \geq 100 MHz)	_	_	TBD (1)	ps (p-p)
t _{OUTPJ_DC} (6)	Period jitter for dedicated clock output (F _{OUT} < 100 MHz)	_	_	TBD (1)	mUI (p-p)
+ (6)	Cycle-to-cycle jitter for dedicated clock output ($F_{OUT} \ge 100 \text{ MHz}$)	_	_	TBD (1)	ps (p-p)
t _{OUTCCJ_DC} (6)	Cycle-to-cycle jitter for dedicated clock output (F _{OUT} < 100 MHz)	_	_	TBD (1)	mUI (p-p)
t _{outpj_10} (6),	Period Jitter for clock output on the regular I/O $(F_{OUT} \ge 100 \text{ MHz})$	_	_	TBD (1)	ps (p-p)
(9)	Period Jitter for clock output on the regular I/O (F _{OUT} < 100 MHz)			TBD (1)	mUI (p-p)
t _{outccj_io} (6),	Cycle-to-cycle jitter for clock output on the regular I/O ($F_{OUT} \ge 100$ MHz)	_		TBD (1)	ps (p-p)
(9)	Cycle-to-cycle jitter for clock output on the regular I/O (F _{OUT} < 100 MHz)	_	_	TBD (1)	mUI (p-p)

Table 2–25. PLL Specifications for Arria V Devices—*Preliminary* (1) (Part 3 of 3)

Symbol	Parameter	Min	Тур	Max	Unit
t _{OUTPJ_DC_F}	Period jitter for dedicated clock output in fractional mode			TBD (1)	_
t _{OUTCCJ_DC_F}	Cycle-to-cycle jitter for dedicated clock output in fractional mode		_	TBD (1)	_
t _{OUTPJ_IO_F}	Period Jitter for clock output on the regular I/O in fractional mode		_	TBD (1)	_
t _{OUTCCJ_IO_F}	Cycle-to-cycle jitter for clock output on the regular I/O in fractional mode		_	TBD (1)	_
t _{CASC_OUTPJ_DC}	Period jitter for dedicated clock output in cascaded PLLs (F _{OUT} ≥100 MHz)		_	TBD (1)	ps (p-p)
(6), (7)	Period jitter for dedicated clock output in cascaded PLLs (F _{OUT} < 100 MHz)	_	_	TBD (1)	mUI (p-p)
t _{DRIFT}	Frequency drift after PFDENA is disabled for a duration of 100 µs		_	±10	%
dK _{BIT}	Bit number of Delta Sigma Modulator (DSM)		24	_	bits
k _{VALUE}	Numerator of Fraction	TBD (1)	8388608	TBD (1)	_
f _{RES}	Resolution of VCO frequency (f _{INPFD} =100 MHz)	_	5.96	_	Hz

Notes to Table 2-25:

- (1) Pending silicon characterization.
- (2) This specification is limited in the Quartus II software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard.
- (3) This specification is limited by the lower of the two: I/O f_{MAX} or F_{OUT} of the PLL.
- (4) A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source < 120 ps.
- (5) F_{REF} is fIN/N when N = 1.
- (6) Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.9999999974404 % confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied. The external memory interface clock output jitter specifications use a different measurement method and are available in Table 2–33 on page 2–34.
- $(7) \quad \hbox{The cascaded PLL specification is only applicable with the following conditions:}$
 - a. Upstream PLL: 0.59 MHz \leq Upstream PLL BW < 1 MHz
 - b. Downstream PLL: Downstream PLL BW > 2 MHz
- (8) High bandwidth PLL settings are not supported in external feedback mode.
- (9) External memory interface clock output jitter specifications use a different measurement method, which are available in Table 2–33 on page 2–34.

DSP Block Specifications

Table 2–26 lists the Arria V DSP block performance specifications.

Table 2–26. DSP Block Performance Specifications for Arria V Devices—Preliminary

		Performance						
Mode	–C4 Speed Grade	-C5, I5 Speed Grade	-C6 Speed Grade	Unit				
Modes using One DSP Block								
Independent 9 x 9 Multiplication	370	310	220	MHz				
Independent 18 x 19 Multiplication	370	310	220	MHz				
Independent 18 x 18 Multiplication	370	310	220	MHz				
Independent 27 x 27 Multiplication	310	250	200	MHz				
Independent 18 x 25 Multiplication	370	310	220	MHz				
Independent 20 x 24 Multiplication	370	310	220	MHz				
Two 18 x 19 Multiplier Adder Mode	370	310	220	MHz				
18 x 18 Multiplier Added Summed with 36-bit Input	370	310	220	MHz				
Modes using Two DSP Blocks	<u> </u>							
Complex 18 x 19 multiplication	370	310	220	MHz				
Two 27 x 27 Multiplier Adder	310	250	200	MHz				
Four 18 x 19 Multiplier Adder	370	310	220	MHz				

Memory Block Specifications

Table 2–27 lists the Arria V memory block specifications.

Table 2–27. Memory Block Performance Specifications for Arria V Devices—*Preliminary* (1), (2) (Part 1 of 2)

		Resources Used						
Memory	Mode ALUTS Memory		Memory	C4 Speed Grade	C5,I5 Speed Grade	C6 Speed Grade	Unit	
MLAB	Single port, all supported widths	0	1	500	450	400	MHz	
	Simple dual-port, all supported widths	0	1	500	450	400	MHz	
	Simple dual-port with read and write at the same address	0	1	400	350	300	MHz	
	ROM, all supported width	_		500	450	400	MHz	

Table 2–27. Memory Block Performance Specifications for Arria V Devices— <i>Preliminary</i> (1), (2) (Part 2 of 2	Table 2-27.	Memory Block Pe	erformance Specificati	ons for Arria V Devices	—Preliminary (1), (2)	(Part 2 of 2)
---	-------------	------------------------	------------------------	-------------------------	-----------------------	---------------

		Resour	ces Used				
Memory	Mode	ALUTS	Memory	C4 Speed Grade	C5,I5 Speed Grade	C6 Speed Grade	Unit
	Single-port, all supported widths	0	1	400	350	285	MHz
M10K Block	Simple dual-port, all supported widths	0	1	400	350	285	MHz
	Simple dual-port with the read-during-write option set to Old Data , all supported widths	0	1	315	275	240	MHz
	True dual port, all supported widths	0	1	400	350	285	MHz
	ROM, all supported widths	0	1	400	350	285	MHz
	Min Pulse Width (clock high time)	_	_	1,275	1,360	1,445	ps
	Min Pulse Width (clock low time)	_	_	850	1,060	1,175	ps

Notes to Table 2-27:

Temperature Sensing Diode Specifications

Table 2–28 lists the specifications for the Arria V internal temperature sensing diode.

Table 2–28. Internal Temperature Sensing Diode Specifications for Arria V Devices—Preliminary

Temperature Range	Accuracy	Offset Calibrated Option	Sampling Rate	Conversion Time	Resolution	Minimun Resolution with no Missing Codes
-40 to 100°C	±8°C	No	Frequency: 1 MHz	< 100 ms	8 bits	8 bits

Periphery Performance

This section describes periphery performance and the high-speed I/O and external memory interface.

I/O performance supports several system interfaces, such as the LVDS high-speed I/O interface, external memory interface, and the PCI/PCI-X bus interface. GPIO standards such as 3.3-, 2.5-, 1.8-, and 1.5-V **LVTTL/LVCMOS** are capable of a typical 167 MHz and 1.2 **LVCMOS** at 100 MHz interfacing frequency with a 10 pF load.

Actual achievable frequency depends on design- and system-specific factors. You must perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system.

⁽¹⁾ To achieve the maximum memory block performance, use a memory block clock that comes through global clock routing from an on-chip PLL set to **50**% output duty cycle. Use the Quartus II software to report timing for this and other memory block clocking schemes.

⁽²⁾ When you use the error detection cyclical redundancy check (CRC) feature, there is no degradation in f_{MAX}.

High-Speed I/O Specification

Table 2–29 lists high-speed I/O timing for Arria V devices.

Table 2–29. High-Speed I/O Specifications for Arria V Devices—*Preliminary* (1), (2), (3) (Part 1 of 3)

0	O and the same	-4	l Speed	Grade	بـ	5 Speed	Grade	–6 Speed Grade			Unit
Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{HSCLK_in} (input clock frequency) True Differential I/O Standards	Clock boost factor W = 1 to 40 ⁽⁵⁾		_	625	5	_	625	5	_	TBD	MHz
f _{HSCLK_in} (input clock frequency) Single Ended I/O Standards	Clock boost factor W = 1 to 40 ⁽⁵⁾	5	_	625	5	_	625	5	_	TBD	MHz
f _{HSCLK_in} (input clock frequency) Single Ended I/O Standards	Clock boost factor W = 1 to 40 (5)	5	_	TBD	5	_	TBD	5	_	TBD	MHz
f _{HSCLK_OUT} (output clock frequency)	_		_	625 ⁽⁶⁾	5	_	625 ⁽⁶⁾	5	_	TBD (6)	MHz
Transmitter											
True	SERDES factor J = 3 to 10	(7)	_	1250	(7)		1250	(7)		1050	Mbps
Differential I/O Standards - f _{HSDR} (data rate)	SERDES factor J = 1 to 2, Uses DDR Registers	(7)	_	(7)	(7)	_	(7)	(7)	_	(7)	Mbps
Emulated Differential I/O Standards with Three External Output Resistor Networks - f _{HSDR} (data rate) (8)	SERDES factor J = 4 to 10	(7)	_	TBD	(7)	_	TBD	(7)	_	TBD	Mbps
t _{x Jitter} - True Differential	Total Jitter for Data Rate, 600 Mbps - 1.25 Gbps	_	_	160	_	_	160	_	_	160	ps
I/O Standards	Total Jitter for Data Rate, < 600 Mbps	_	_	0.1	_	_	0.1	_	_	0.1	UI

Switching Characteristics

Table 2–29. High-Speed I/O Specifications for Arria V Devices—*Preliminary* (1), (2), (3) (Part 2 of 3)

Ob.al	O and distance	-4	Speed	Grade	-4	5 Speed	Grade	-6	Speed	Grade	11
Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
t _{x Jitter} - Emulated	Total Jitter for Data Rate, 600 Mbps – 1.25 Gbps	_	_	TBD	_	_	TBD	_	_	TBD	ps
Differential I/O Standards with Three External Output Resistor Network	Total Jitter for Data Rate < 600 Mbps	_	_	TBD	_	_	TBD	_	_	TBD	UI
t _{DUTY}	TX output clock duty cycle for both True and Emulated Differential I/O Standards	45	50	55	45	50	55	45	50	55	%
	True Differential I/O Standards		_	200		_	200	_		200	ps
t _{RISE &} t _{FALL}	Emulated Differential I/O Standards with Three External Output Resistor Networks	_	_	250	_	_	250	_	_	300	ps
	True Differential I/O Standards	_	_	150	_	_	150	_	_	150	ps
TCCS	Emulated Differential I/O Standards	_	_	300	_	_	300	_	_	300	ps
Receiver											
True Differential I/O Standards - f _{HSDRDPA} (data rate)	SERDES factor J = 3 to 10	_	_	1250	_	_	1250	_	_	1050	Mbps
f /data	SERDES factor J = 3 to 10	(7)	_	(9)	(7)	_	(9)	(7)		(9)	Mbps
f _{HSDR} (data rate)	SERDES factor J = 1 to 2, Uses DDR Registers	(7)	_	(7)	(7)	_	(7)	(7)	_	(7)	Mbps
DPA Mode						•					
DPA run length	_	_	_	10000	_	_	10000	_	_	10000	UI
Soft CDR mode	<u> </u>	-			-			•	-	•	•
Soft-CDR ppm tolerance	_	_		300	_		300		_	300	± ppm

November 2011 Altera Corporation

Arria V Device Handbook Volume 1: Device Overview and Datasheet

Table 2–29. High-Speed I/O Specifications for Arria V Devices—Preliminary (1), (2), (3) (Part 3 of 3)

Symbol	Conditions	-4 Speed Grade			(–5 Speed Grade			−6 Speed Grade		
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Non DPA Mode											
Sampling Window	_	_	_	300	_	_	300	_	_	300	ps

Notes to Table 2-29:

- (1) When J = 3 to 10, use the serializer/deserializer (SERDES) block.
- (2) When J = 1 or 2, bypass the SERDES block.
- (3) This applies to LVDS source synchronous mode only.
- (4) This applies to DPA and soft-CDR modes only.
- (5) Clock Boost Factor (W) is the ratio between the input data rate and the input clock rate.
- (6) This is achieved by using the LVDS clock network.
- (7) The minimum specification depends on the clock source (for example, the PLL and clock pin) and the clock routing resource (global, regional, or local) that you use. The I/O differential buffer and input register do not have a minimum toggle rate.
- (8) You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and receiver sampling margin to determine the leftover timing margin.
- (9) You can estimate the achievable maximum data rate for non-DPA mode by performing link timing closure analysis. You must consider the board skew margin, transmitter delay margin, and receiver sampling margin to determine the maximum data rate supported.

Figure 2–1 shows the DPA lock time specifications with the DPA PLL calibration option enabled.

Figure 2–1. DPA Lock Time Specification with DPA PLL Calibration Enabled

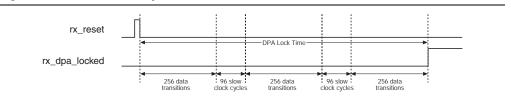


Table 2–30 lists the DPA lock time specifications for Arria V devices.

Table 2–30. DPA Lock Time Specifications for Arria V Devices—Preliminary (1), (2), (3)

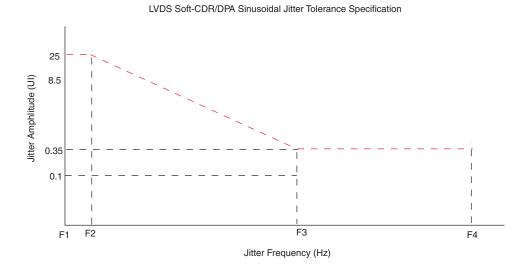
Standard	Training Pattern	Number of Data Transitions in One Repetition of the Training Pattern	Number of Repetitions per 256 Data Transitions ⁽⁴⁾	Maximum
SPI-4	00000000001111111111	2	128	640 data transitions
Parallel Rapid I/O	00001111	2	128	640 data transitions
rafallel hapiu 1/0	10010000	4	64	640 data transitions
Miscellaneous	10101010	8	32	640 data transitions
IVIISCEIIAIIEUUS	01010101	8	32	640 data transitions

Notes to Table 2-30:

- (1) The DPA lock time is for one channel.
- (2) One data transition is defined as a 0-to-1 or 1-to-0 transition.
- (3) The DPA lock time stated in this table applies to both commercial and industrial grades.
- (4) This is the number of repetitions for the stated training pattern to achieve the 256 data transitions.

Figure 2–2 shows the LVDS soft-CDR/DPA sinusoidal jitter tolerance specification for a data rate equal to 1.25 Gbps.

Figure 2-2. LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specification for a Data Rate Equal to 1.25 Gbps



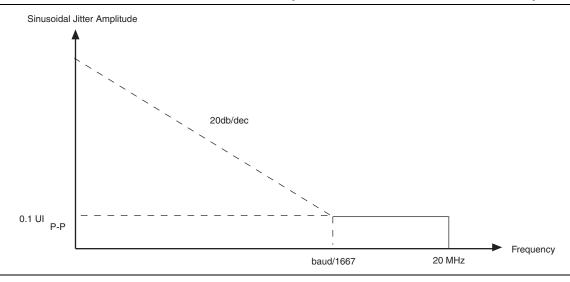

Table 2–31 lists the LVDS soft-CDR/DPA sinusoidal jitter tolerance specification for a data rate equal to 1.25 Gbps.

Table 2-31. LVDS Soft-CDR/DPA Sinusoidal Jitter Mask Values for a Data Rate Equal to 1.25 Gbps—Preliminary

Jitter Fre	quency (Hz)	Sinusoidal Jitter (UI)
F1	10,000	25.000
F2	17,565	25.000
F3	1,493,000	0.350
F4	50,000,000	0.350

Figure 2–3 shows the LVDS soft-CDR/DPA sinusoidal jitter tolerance specification for a data rate less than 1.25 Gbps.

Figure 2-3. LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specification for a Data Rate Less than 1.25 Gbps

DQS Logic Block and Memory Output Clock Jitter Specifications

Table 2–32 lists the DQS phase shift error for Arria V devices.

Table 2–32. DQS Phase Shift Error Specification for DLL-Delayed Clock (t_{DQS_PSERR}) for Arria V Devices—*Preliminary* (1), (2)

Number of DQS De	elay –C4	-C5, I5	–C6	Unit
Buffer	Speed Grade	Speed Grade	Speed Grade	
2	57	58	74	ps

Notes to Table 2-32:

- (1) The numbers are preliminary pending silicon characterization.
- (2) This error specification is the absolute maximum and minimum error. For example, skew on two DQS delay buffers in a -4 speed grade is 58 ps or ±29 ps.

Table 2–33 lists the memory output clock jitter specifications for Arria V devices.

Table 2–33. Memory Output Clock Jitter Specification for Arria V Devices—Preliminary (1) (Part 1 of 2)

Parameter	Clock	Symbol		4 Grade	Speed	5 Grade	Speed	6 Grade	Unit
	Network		Min	Max	Min	Max	Min	Max	
Clock period jitter	Regional	t _{JIT(per)}	-50	50	-55	55	- 55	55	ps
Cycle-to-cycle period jitter	Regional	$t_{\rm JIT(cc)}$	-100	100	-110	110	-110	110	ps
Duty cycle jitter	Regional	t _{JIT(duty)}	-50	50	-82.5	82.5	-82.5	82.5	ps
Clock period jitter	Global	t _{JIT(per)}	-75	75	-82.5	82.5	-82.5	82.5	ps
Cycle-to-cycle period jitter	Global	t _{JIT(cc)}	-150	150	-165	165	-165	165	ps

Table 2–33. Memory Output Clock Jitter Specification for Arria V Devices—*Preliminary* (1) (Part 2 of 2)

Parameter	Clock Network	Symnoi		-4 Speed Grade Sp		5 Grade	−6 Speed Grade		Unit
	NGIWUIK		Min	Max	Min	Max	Min Max	Max	
Duty cycle jitter	Global	t _{JIT(duty)}	-75	75	-90	90	-90	90	ps

Note to Table 2-33:

(1) The memory output clock jitter measurements are for 200 consecutive clock cycles, as specified in the JEDEC DDR2/DDR3 SDRAM standard.

OCT Calibration Block Specifications

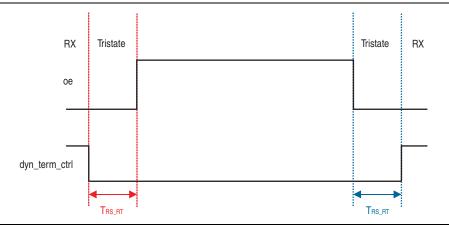

Table 2–34 lists the OCT calibration block specifications for Arria V devices.

Table 2–34. OCT Calibration Block Specifications for Arria V Devices—Preliminary

Symbol	Description	Min	Тур	Max	Unit
OCTUSRCLK	Clock required by OCT calibration blocks	_	_	20	MHz
T _{OCTCAL}	Number of OCTUSRCLK clock cycles required for $\rm R_S$ OCT \rm /R_T OCT calibration	_	1000	_	Cycles
T _{OCTSHIFT}	Number of OCTUSRCLK clock cycles required for OCT code to shift out	_	32	_	Cycles
T _{RS_RT}	Time required between the $\mathtt{dyn_term_ctrl}$ and oe signal transitions in a bidirectional I/O buffer to dynamically switch between R_S OCT and R_T OCT	_	2.5	_	ns

Figure 2–4 shows the T_{RS_RT} for dyn_term_ctrl and oe signals.

Figure 2-4. Timing Diagram for dyn_term_ctrl and oe Signals

Duty Cycle Distortion (DCD) Specifications

Table 2–35 lists the worst-case DCD for Arria V devices.

Table 2-35. Worst-Case DCD on Arria V I/O Pins—Preliminary

Symbol	-C4 Speed Grade		-C5,I5 Speed Grade		-C6 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max		
Output Duty Cycle	45	55	45	55	45	55	%	

Configuration Specification

This section provides configuration specifications and timing for Arria V devices.

These characteristics can be designated as Preliminary or Final.

- Preliminary characteristics are created using simulation results, process data, and other known parameters. The title of these tables show the designation as "Preliminary."
- Final numbers are based on actual silicon characterization and testing. The numbers reflect the actual performance of the device under worst-case silicon process, voltage, and junction temperature conditions. There are no designations on finalized tables.

POR Specifications

Table 2–36 lists the specifications for fast and standard POR for Arria V devices.

Table 2–36. Fast and Standard POR Delay Specification for Arria V Devices (1)

POR Delay	Minimum (ms)	Maximum (ms)
Fast (2)	4	12
Standard (3)	100	300

Notes to Table 2-36:

- (1) Select the POR delay based on the MSEL setting as described in the "Configuration Schemes for Arria V Devices" table in the Configuration, Design Security, and Remote System Upgrades in Arria V Devices chapter.
- (2) When the PORSEL signal is **high**, the device is in fast POR delay.
- (3) When the ${\tt PORSEL}$ signal is low, the device is in standard POR delay.

JTAG Configuration Timing

Table 2–37 lists the JTAG timing parameters and values for Arria V devices.

Table 2–37. JTAG Timing Parameters and Values for Arria V Devices—*Preliminary* (Part 1 of 2)

Symbol	Description	Min	Max	Unit
t _{JCP}	TCK clock period	30	_	ns
t _{JCH}	TCK clock high time	14	_	ns
t _{JCL}	TCK clock low time	14	_	ns
t _{JPSU (TDI)}	TDI JTAG port setup time	1	_	ns

Table 2-37. JTAG Timing Parameters and Values for Arria V Devices—Preliminary (Part 2 of 2)

Symbol	Description	Min	Max	Unit
t _{JPSU (TMS)}	TMS JTAG port setup time	3	_	ns
t _{JPH}	JTAG port hold time	5	_	ns
t _{JPCO}	JTAG port clock to output	_	11 ⁽¹⁾	ns
t _{JPZX}	JTAG port high impedance to valid output	_	14 ⁽¹⁾	ns
t _{JPXZ}	JTAG port valid output to high impedance	_	14 ⁽¹⁾	ns

Note to Table 2-37:

FPP Configuration Timing

This section describes the fast passive parallel (FPP) configuration timing parameters for Arria V devices.

DCLK-to-DATA[] Ratio (r) for FPP Configuration

FPP configuration requires a different DCLK-to-DATA[] ratio when you turn on encryption or the compression feature.

Table 2–38 lists the DCLK-to-DATA[] ratio for each combination.

Table 2–38. DCLK-to-DATA[] Ratio for Arria V Devices (1)

Configuration Scheme	Encryption	Compression	DCLK-to-DATA[] ratio (r)
	Off	Off	1
FPP (8-bit wide)	On	Off	1
TFF (0-bit wide)	Off	On	2
	On	On	2
	Off	Off	1
FPP (16-bit wide)	On	Off	2
TTT (10-bit wide)	Off	On	4
	On	On	4

Note to Table 2-38:

⁽¹⁾ A 1-ns adder is required for each V_{CCIO} voltage step down from 3.0 V. For example, t_{JPCO} = 12 ns if V_{CCIO} of the TDO I/O bank = 2.5 V, or 13 ns if it equals 1.8 V.

⁽¹⁾ Depending on the DCLK-to-DATA[] ratio, the host must send a DCLK frequency that is r times the DATA[] rate in byte per second (Bps) or word per second (Wps). For example, in FPP x16 where the r is 2, the DCLK frequency must be 2 times the DATA[] rate in Wps.

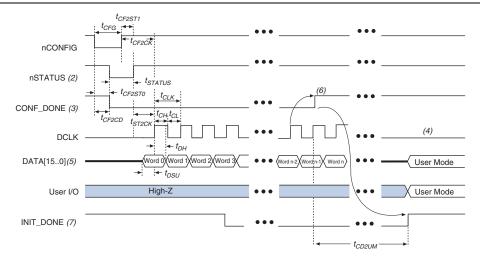

FPP Configuration Timing when DCLK to DATA[] = 1

Figure 2–5 shows the timing waveform for a FPP configuration when using a MAX $^{\$}$ II device as an external host. This timing waveform shows timing when the DCLK-to-DATA[] ratio is 1.

When you enable decompression or the design security feature, the DCLK-to-DATA[] ratio varies for FPP x8 and FPP x16. For the respective DCLK-to-DATA[] ratio, refer to Table 2–38.

Figure 2–5. DCLK-to-DATA[] FPP Configuration Timing Waveform When the Ratio is 1 (1)

Notes to Figure 2-5:

- (1) The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic-high levels. When nCONFIG is pulled low, a reconfiguration cycle begins.
- (2) After power up, the Arria V device holds nSTATUS low for the time of the POR delay.
- (3) After power up, before and during configuration, CONF_DONE is low.
- (4) Do not leave DCLK floating after configuration. You can drive it high or low, whichever is more convenient.
- (5) For FPP x16, use DATA [15..0]. For FPP x8, use DATA [7..0]. DATA [15..0] are available as a user I/O pin after configuration. The state of this pin depends on the dual-purpose pin settings.
- (6) To ensure a successful configuration, send the entire configuration data to the Arria V device. CONF_DONE is released high when the Arria V device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode.
- (7) After the option bit to enable the INIT DONE pin is configured into the device, the INIT DONE goes low.

Table 2–39 lists the timing parameters for Arria V devices for FPP configuration when the DCLK-to-DATA[] ratio is 1.

Table 2–39. DCLK-to-DATA[] FPP Timing Parameters for Arria V Devices When the Ratio is 1—*Preliminary* ⁽¹⁾ (Part 1 of 2)

Symbol	Parameter	Minimum	Maximum	Unit
t _{CF2CD}	nCONFIG low to CONF_DONE low	_	600	ns
t _{CF2ST0}	nconfig low to nstatus low	_	600	ns
t _{CFG} nCONFIG low pulse width		2	_	μs
t _{STATUS}	nstatus low pulse width	268	1506 ⁽²⁾	μѕ

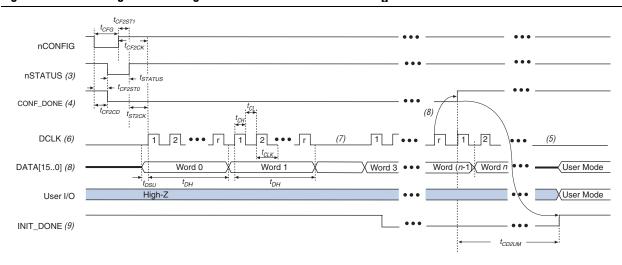
Table 2–39. DCLK-to-DATA[] FPP Timing Parameters for Arria V Devices When the Ratio is 1—*Preliminary* ⁽¹⁾ (Part 2 of 2)

Symbol	Parameter	Minimum	Maximum	Unit
t _{CF2ST1}	nCONFIG high to nSTATUS high	_	1506 ⁽³⁾	μs
t _{CF2CK}	nconfig high to first rising edge on DCLK	1506	_	μѕ
t _{ST2CK}	nstatus high to first rising edge of DCLK	2	_	μѕ
t _{DSU}	DATA[] setup time before rising edge on DCLK	5.5	_	ns
t _{DH}	DATA[] hold time after rising edge on DCLK	0	_	ns
t _{CH}	DCLK high time	0.45 x 1/f _{MAX}	_	ns
t _{CL}	DCLK low time	0.45 x 1/f _{MAX}	_	ns
t _{CLK}	DCLK period	1/f _{MAX}	_	ns
f _{MAX}	DCLK frequency (FPP x8/ x16)	_	125	MHz
t _R	Input rise time	_	40	ns
t _F	Input fall time	_	40	ns
t _{CD2UM}	CONF_DONE high to user mode (4)	175	437	μs
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	4 × maximum DCLK period	_	_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t _{CD2CU} + (T _{init} x CLKUSR period)	_	_
T _{init}	Number of clock cycles required for device initialization	17,408		Cycles

Notes to Table 2-39:

⁽¹⁾ Use these timing parameters when the DCLK-to-DATA[] ratio is 1. To find the DCLK-to-DATA[] ratio for your system, refer Table 2–38 on page 2–37.

⁽²⁾ You can obtain this value if you do not delay configuration by extending the nconfig or the nstatus low pulse width.


⁽³⁾ You can obtain this value if you do not delay configuration by externally holding the nSTATUS low.

⁽⁴⁾ The minimum and maximum numbers apply only if you chose the internal oscillator as the clock source for initializing the device.

FPP Configuration Timing when DCLK to DATA[] > 1

Figure 2–6 shows the timing waveform for a FPP configuration when using a MAX II device or microprocessor as an external host. This waveform shows timing when the DCLK-to-DATA[] ratio is more than 1.

Figure 2–6. FPP Configuration Timing Waveform When the DCLK-to-DATA[] Ratio is >1 (1), (2)

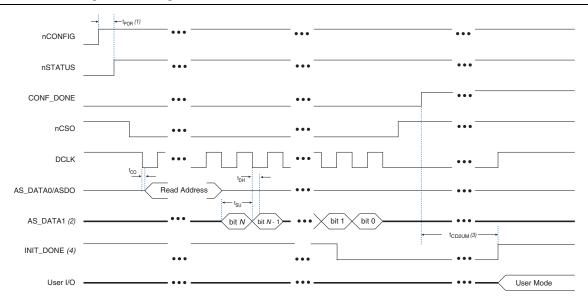
Notes to Figure 2-6:

- (1) To find the DCLK-to-DATA[] ratio for your system, refer Table 2–38 on page 2–37.
- (2) The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic high levels. When nCONFIG is pulled low, a reconfiguration cycle begins.
- (3) After power up, the Arria V device holds nSTATUS low for the time as specified by the POR delay.
- (4) After power up, before and during configuration, CONF_DONE is low.
- (5) Do not leave DCLK floating after configuration. You can drive it high or low, whichever is more convenient.
- (6) "r" denotes the DCLK-to-DATA[] ratio. For the DCLK-to-DATA[] ratio based on the decompression and the design security feature enable settings, refer to Table 2–38 on page 2–37.
- (7) If needed, pause DCLK by holding it low. When DCLK restarts, the external host must provide data on the DATA [15..0] pins prior to sending the first DCLK rising edge.
- (8) To ensure a successful configuration, send the entire configuration data to the Arria V device. CONF_DONE is released high after the Arria V device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode.
- (9) After the option bit to enable the <code>INIT_DONE</code> pin is configured into the device, the <code>INIT_DONE</code> goes low.

Table 2–40 lists the timing parameters for Arria V devices when the DCLK-to-DATA [] ratio is more than 1.

Table 2–40. DCLK-to-DATA[] FPP Timing Parameters for Arria V Devices When the Ratio is >1—Preliminary (1)

Symbol	Parameter	Minimum	Maximum	Unit
t _{CF2CD}	nconfig low to conf_done low	_	600	ns
t _{CF2ST0}	nconfig low to nstatus low	_	600	ns
t _{CFG}	nCONFIG low pulse width	2	_	μs
t _{STATUS}	nstatus low pulse width	268	1506 ⁽²⁾	μs
t _{CF2ST1}	nCONFIG high to nSTATUS high	_	1506 ⁽³⁾	μs
t _{CF2CK}	nCONFIG high to first rising edge on DCLK	1506	_	μs
t _{ST2CK}	nstatus high to first rising edge of DCLK	2	_	μs
t _{DSU}	DATA[] setup time before rising edge on DCLK	5.5	_	ns
t _{DH}	DATA[] hold time after rising edge on DCLK	3 x 1/f _{DCLK}	_	ns
t _{CH}	DCLK high time	0.45 x 1/f _{MAX}	_	ns
t _{CL}	DCLK low time	0.45 x 1/f _{MAX}	_	ns
t _{CLK}	DCLK period	1/f _{MAX}	_	ns
f _{MAX}	DCLK frequency (FPP x8/ x16)	_	125	MHz
t _R	Input rise time	_	40	ns
t _F	Input fall time	_	40	ns
t _{CD2UM}	CONF_DONE high to user mode (4)	175	437	μs
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	4 × maximum DCLK period	_	_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t _{CD2CU} + (T _{init} x CLKUSR period)	_	_
T _{init}	Number of clock cycles required for device initialization	17,408	_	Cycles


Notes to Table 2-40:

- (1) Use these timing parameters when you use decompression and the design security features.
- (2) This value can be obtained if you do not delay configuration by extending the nconfig or nstatus low pulse width.
- (3) This value can be obtained if you do not delay configuration by externally holding ${\tt nSTATUS}$ low.
- (4) The minimum and maximum numbers apply only if you chose the internal oscillator as the clock source for initializing the device.

AS Configuration Timing

Figure 2–7 shows the timing waveform for the active serial (AS) x1 mode and AS x4 mode configuration timing.

Figure 2-7. AS Configuration Timing

Notes to Figure 2-7:

- (1) The AS scheme supports standard and fast POR delay (t_{POR}). For t_{POR} delay information, refer to the "POR Delay Specification" section in the *Configuration, Design Security, and remote System Upgrades in Arria V Devices* chapter.
- (2) If you are using AS x4 mode, this signal represents the AS DATA [3..0] and EPCQ sends in 4-bits of data for each DCLK cycle.
- (3) The initialization clock can be from the internal oscillator or CLKUSR pin.
- (4) After the option bit to enable the INIT DONE pin is configured into the device, the INIT DONE goes low.

Table 2–41 lists the timing parameters for AS x1 and AS x4 configurations in Arria V devices.

Table 2–41. AS Timing Parameters for AS x1 and x4 Configurations in Arria V Devices—Preliminary (1), (2)

Symbol	Parameter	Minimum	Maximum	Unit
t _{co}	DCLK falling edge to the AS_DATAO/ASDO output	_	4	μs
t _{SU}	Data setup time before the rising edge on DCLK	1.5		ns
t _H	Data hold time after the rising edge on DCLK	0	_	ns
t _{CD2UM}	CONF_DONE high to user mode	175	437	μs
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	4 x maximum DCLK period	_	_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t _{CD2CU} + (T _{init} x CLKUSR period)	_	_
T _{init}	Number of clock cycles required for device initialization	17,408	_	Cycles

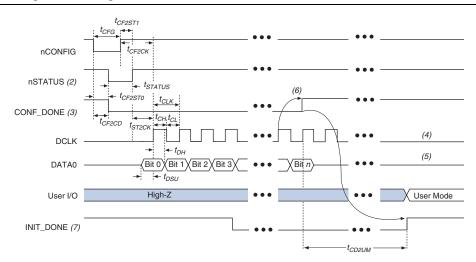
Notes to Table 2-41:

- (1) The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device.
- (2) The t_{CF2CD}, t_{CF2ST0}, t_{CFG}, t_{STATUS}, and t_{CF2ST1} timing parameters are identical to the timing parameters for PS mode listed in Table 2–43 on page 2–44.

Table 2–42 lists the internal clock frequency specification for the AS configuration scheme.

Table 2–42. DCLK Frequency Specification in the AS Configuration Scheme—Preliminary (1), (2)

Minimum	Typical	Maximum	Unit
5.3	7.9	12.5	MHz
10.6	15.7	25.0	MHz
21.3	31.4	50.0	MHz
42.6	62.9	100.0	MHz


Notes to Table 2-42:

- (1) This applies to the DCLK frequency specification when using the internal oscillator as the configuration clock source.
- (2) The AS multi-device configuration scheme does not support DCLK frequency of 100 MHz.

PS Configuration Timing

Figure 2–8 shows the timing waveform for a passive serial (PS) configuration when using a MAX II device or microprocessor as an external host.

Figure 2–8. PS Configuration Timing Waveform (1)

Notes to Figure 2-8:

- (1) The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic high levels. When nCONFIG is pulled low, a reconfiguration cycle begins.
- (2) After power up, the Arria V device holds nSTATUS low for the time of the POR delay.
- (3) After power up, before and during configuration, ${\tt CONF_DONE}$ is low.
- (4) Do not leave DCLK floating after configuration. You can drive it high or low, whichever is more convenient.
- (5) DATAO is available as a user I/O pin after configuration. The state of this pin depends on the dual-purpose pin settings in the **Device and Pins Option**.
- (6) To ensure a successful configuration, send the entire configuration data to the Arria V device. CONF_DONE is released high after the Arria V device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode.
- (7) After the option bit to enable the INIT DONE pin is configured into the device, the INIT DONE goes low.

Table 2–43 lists the PS timing parameter for Arria V devices.

Table 2-43. PS Timing Parameters for Arria V Devices—Preliminary

Symbol	Parameter	Minimum	Maximum	Unit
t _{CF2CD}	nCONFIG low to CONF_DONE low	_	600	ns
t _{CF2ST0}	nconfig low to nstatus low	<u>—</u>	600	ns
t_{CFG}	nconfig low pulse width	2	_	μs
t _{STATUS}	nstatus low pulse width	268	1506 (1)	μs
t _{CF2ST1}	nCONFIG high to nSTATUS high	_	1506 ⁽²⁾	μs
t _{CF2CK}	nCONFIG high to first rising edge on DCLK	1506	_	μs
t _{ST2CK}	nstatus high to first rising edge of DCLK	2	_	μs
t _{DSU}	DATA[] setup time before rising edge on DCLK	5.5	_	ns
t _{DH}	DATA[] hold time after rising edge on DCLK	0	_	ns
t _{CH}	DCLK high time	0.45 x 1/f _{MAX}	_	ns
t _{CL}	DCLK low time	0.45 x 1/f _{MAX}	_	ns
t _{CLK}	DCLK period	1/f _{MAX}	_	ns
f _{MAX}	DCLK frequency	_	125	MHz
t _R	Input rise time	_	40	ns
t _F	Input fall time	-	40	ns
t _{CD2UM}	CONF_DONE high to user mode (3)	175	437	μs
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	4 x maximum DCLK period	_	_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t _{CD2CU} + (T _{init} x CLKUSR period)	_	_
T _{init}	Number of clock cycles required for device initialization	17,408	_	Cycles

Notes to Table 2-43:

- (1) You can obtain this value if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.
- (2) You can obtain this value if you do not delay configuration by externally holding ${\tt nSTATUS}$ low.
- (3) The minimum and maximum numbers apply only if you chose the internal oscillator as the clock source for initializing the device.

Remote System Upgrades Circuitry Timing Specification

Table 2–44 lists the timing parameter specifications for the remote system upgrade circuitry.

Table 2-44. Remote System Upgrade Circuitry Timing Specification

Parameter	Minimum	Maximum	Unit
t _{MAX_RU_CLK} (1)	_	40	MHz
t _{RU_nCONFIG} (2)	250	_	ns
t _{RU_nRSTIMER} (3)	250	_	ns

Notes to Table 2-44:

- (1) This clock is user-supplied to the remote system upgrade circuitry. If you are using the ALTREMOTE_UPDATE megafunction, the clock user-supplied to the ALTREMOTE_UPDATE megafunction must meet this specification.
- (2) This is equivalent to strobing the reconfiguration input of the ALTREMOTE_UPDATE megafunction high for the minimum timing specification. For more information, refer to the "Remote System Upgrade State Machine" section in the *Device Interfaces and Integration Basics for Arria V Devices* chapter.
- (3) This is equivalent to strobing the reset timer input of the ALTREMOTE_UPDATE megafunction high for the minimum timing specification. For more information, refer to the "User Watchdog Timer" section in the Device Interfaces and Integration Basics for Arria V Devices chapter.

User Watchdog Internal Oscillator Frequency Specification

Table 2–45 lists the frequency specifications for the user watchdog internal oscillator.

Table 2-45. User Watchdog Internal Oscillator Frequency Specifications—*Preliminary*

Minimum	Typical	Maximum	Unit	
5.3	7.9	12.5	MHz	

I/O Timing

Altera offers two ways to determine I/O timing—the Excel-based I/O Timing and the Quartus II Timing Analyzer.

Excel-based I/O timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis. The Quartus II Timing Analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after you complete place-and-route.

You can download the Excel-based I/O Timing spreadsheet from the Arria V Devices Literature webpage.

Programmable IOE Delay

Table 2–46 lists the Arria V IOE programmable delay settings.

Table 2–46. IOE Programmable Delay for Arria V Devices (1)

Doromotor	Available	Minimum	Fast	Model		Slow Model		Ilmit
Parameter	Settings	Offset	Industrial	Commercial	C4	C5, I5	C6	Unit
TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	ns
TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	ns
TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	ns
TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	ns
TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	ns

Note to Table 2-46:

(1) Pending the Quartus II software extraction.

Programmable Output Buffer Delay

Table 2–47 lists the delay chain settings that control the rising and falling edge delays of the output buffer. The default delay is 0 ps.

Table 2–47. Programmable Output Buffer Delay—Preliminary (1), (2)

Symbol	Parameter	Typical	Unit
		0 (default)	ps
D _{OUTBUF}	Rising and/or falling edge	50	ps
	delay	100	ps
		150	ps

Notes to Table 2-47:

- (1) Pending the Quartus II software extraction.
- (2) You can set the programmable output buffer delay in the Quartus II software by setting the Output Buffer Delay Control assignment to either positive, negative, or both edges, with the specific values stated here (in ps) for the Output Buffer Delay assignment.

Arria V Device Handbook Volume 1: Device Overview and Datasheet

Glossary

Table 2–48 lists the glossary for this chapter.

Table 2-48. Glossary Table (Part 1 of 4)

Letter	Subject	Definitions
Α		
В	_	_
C		
D	Differential I/O Standards	Single-Ended Waveform Positive Channel (p) = V _{IH} Negative Channel (n) = V _{IL} Ground Differential Waveform V _{ID} Positive Channel (n) = V _{IL} Negative Channel (n) = V _{IL} Fransmitter Output Waveforms Single-Ended Waveform Positive Channel (p) = V _{OH} Negative Channel (n) = V _{OH}
E	_	—
	f _{HSCLK}	Left/right PLL input clock frequency. High-speed I/O block—Maximum/minimum LVDS data transfer rate
F	f _{HSDR}	(f _{HSDR} = 1/TUI), non-DPA.
	f _{HSDRDPA}	High-speed I/O block—Maximum/minimum LVDS data transfer rate (f _{HSDRDPA} = 1/TUI), DPA.
G		
Н	_	_
I		

Table 2-48. Glossary Table (Part 2 of 4)

Letter	Subject	Definitions
J	JTAG Timing Specifications	High-speed I/O block—Deserialization factor (width of parallel data bus). JTAG Timing Specifications: TMS TDI TCK t _{JPZX} TDO t _{JPZX} TDO
K L M N	_	_
Р	PLL Specifications	Diagram of PLL Specifications (1) CLKCUT PINS FOUT EXT Core Clock Reconfigurable in User Mode External Feedback Note: (1) Core Clock can only be fed by dedicated clock input pins or PLL outputs.
Q	_	_
R	R_{L}	Receiver differential input discrete resistor (external to the Arria V device).

Table 2-48. Glossary Table (Part 3 of 4)

Letter	Subject	Definitions				
	Sampling window (SW)	Timing Diagram—the period of time during which the data must be valid in order to captur it correctly. The setup and hold times determine the ideal strobe position in the sampling window, as shown: Bit Time				
values. The AC values indicate the voltage levels at which specifications. The DC values indicate the voltage levels a receiver is unambiguously defined. After the receiver inpureceiver changes to the new logic state. The new logic state is then maintained as long as the inputant This approach is intended to provide predictable receiver waveform ringing, as shown: Single-ended voltage Referenced I/O Standard Single-Ended Voltage Referenced I/O Standard VoH(IDC) VREF VILIDES		The new logic state is then maintained as long as the input stays beyond the AC threshold. This approach is intended to provide predictable receiver timing in the presence of input waveform ringing, as shown: Single-Ended Voltage Referenced I/O Standard				
	t _C	High-speed receiver/transmitter input and output clock period.				
Т	TCCS (channel- to-channel-skew)	The timing difference between the fastest and slowest output edges, including the t_{CO} variation and clock skew, across channels driven by the same PLL. The clock is included in the TCCS measurement (refer to the <i>Timing Diagram</i> figure under SW in this table).				
	t _{DUTY}	High-speed I/O block—Duty cycle on high-speed transmitter output clock. Timing Unit Interval (TUI) The timing budget allowed for skew, propagation delays, and the data sampling window. (TUI = 1/(Receiver Input Clock Frequency Multiplication Factor) = t _c /w)				
	t _{FALL}	Signal high-to-low transition time (80–20%)				
	t _{INCCJ}	Cycle-to-cycle jitter tolerance on the PLL clock input				
	t _{OUTPJ_IO}	Period jitter on the GPIO driven by a PLL				
	t _{OUTPJ_DC}	Period jitter on the dedicated clock output driven by a PLL				
	t _{RISE}	Signal low-to-high transition time (20–80%)				
U	_	_				

Table 2-48. Glossary Table (Part 4 of 4)

Letter	Subject	Definitions
	V _{CM(DC)}	DC Common mode input voltage.
	V _{ICM}	Input Common mode voltage—The common mode of the differential signal at the receiver.
	V _{ID}	Input differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.
	V _{DIF(AC)}	AC differential input voltage—Minimum AC input differential voltage required for switching.
	V _{DIF(DC)}	DC differential input voltage— Minimum DC input differential voltage required for switching.
	V _{IH}	Voltage input high—The minimum positive voltage applied to the input which is accepted by the device as a logic high.
	V _{IH(AC)}	High-level AC input voltage
	V _{IH(DC)}	High-level DC input voltage
V	V _{IL}	Voltage input low—The maximum positive voltage applied to the input which is accepted by the device as a logic low.
	V _{IL(AC)}	Low-level AC input voltage
	V _{IL(DC)}	Low-level DC input voltage
	V _{OCM}	Output Common mode voltage—The common mode of the differential signal at the transmitter.
	V _{OD}	Output differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the transmitter.
	V _{SWING}	Differential input voltage
	V _X	Input differential cross point voltage
	V _{OX}	Output differential cross point voltage
W	W	High-speed I/O block—Clock Boost Factor
Χ,		
Y,	_	_
Z		

Document Revision History

Table 2–49 lists the revision history for this chapter.

Table 2-49. Document Revision History

Date	Version	Changes
		■ Updated Table 2–1, Table 2–19, Table 2–26, and Table 2–36.
November. 2011	1.1	■ Added Table 2–5.
		■ Added Figure 2–4.
August 2011	1.0	Initial release.

This chapter provides additional information about the document and Altera.

How to Contact Altera

To locate the most up-to-date information about Altera products, refer to the following table.

Contact (1)	Contact Method	Address
Technical support	Website	www.altera.com/support
Technical training	Website	www.altera.com/training
recinical training	Email	custrain@altera.com
Product literature	Website	www.altera.com/literature
Nontechnical support (general)	Email	nacomp@altera.com
(software licensing)	Email	authorization@altera.com

Note to Table:

(1) You can also contact your local Altera sales office or sales representative.

Typographic Conventions

The following table shows the typographic conventions this document uses.

Visual Cue	Meaning
Bold Type with Initial Capital Letters	Indicate command names, dialog box titles, dialog box options, and other GUI labels. For example, Save As dialog box. For GUI elements, capitalization matches the GUI.
bold type	Indicates directory names, project names, disk drive names, file names, file name extensions, software utility names, and GUI labels. For example, \text{qdesigns} \text{directory}, \textbf{D}: \text{drive}, \text{ and } \text{chiptrip.gdf} \text{ file}.
Italic Type with Initial Capital Letters	Indicate document titles. For example, Stratix IV Design Guidelines.
	Indicates variables. For example, $n + 1$.
italic type	Variable names are enclosed in angle brackets (< >). For example, <file name=""> and <project name="">.pof file.</project></file>
Initial Capital Letters	Indicate keyboard keys and menu names. For example, the Delete key and the Options menu.
"Subheading Title"	Quotation marks indicate references to sections in a document and titles of Quartus II Help topics. For example, "Typographic Conventions."

Additional Information Typographic Conventions

Visual Cue	Meaning
	Indicates signal, port, register, bit, block, and primitive names. For example, \mathtt{datal} , \mathtt{tdi} , and \mathtt{input} . The suffix \mathtt{n} denotes an active-low signal. For example, \mathtt{resetn} .
Courier type	Indicates command line commands and anything that must be typed exactly as it appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.
	Also indicates sections of an actual file, such as a Report File, references to parts of files (for example, the AHDL keyword SUBDESIGN), and logic function names (for example, TRI).
4	An angled arrow instructs you to press the Enter key.
1., 2., 3., and a., b., c., and so on	Numbered steps indicate a list of items when the sequence of the items is important, such as the steps listed in a procedure.
	Bullets indicate a list of items when the sequence of the items is not important.
IF	The hand points to information that requires special attention.
?	A question mark directs you to a software help system with related information.
•••	The feet direct you to another document or website with related information.
CAUTION	A caution calls attention to a condition or possible situation that can damage or destroy the product or your work.
WARNING	A warning calls attention to a condition or possible situation that can cause you injury.
2	The envelope links to the Email Subscription Management Center page of the Altera website, where you can sign up to receive update notifications for Altera documents.